Blog

Nov 17, 2015 · post

When Dog Is Enough: Using Hypernyms To Improve Neural Network Predictions

Possibly true statement: the Fast Forward Labs dog is the cutest dog in the world. 

image

Our General Counsel Ryan picked up the puppy a month ago and we’ve yet to name him. Ryan likes Renfield, which, as Bram Stoker fans know, evokes slightly different thoughts than “super cute,” particularly when played by the ever-guttural Tom Waits. But the fact that we’re in no rush to name him tells us something about how we label and identify things. We know he’s a dog, we love him for his dogness, and thus far that’s been just fine. I personally tend to forget what breed he is, as my knowledge of dog breeds is shamefully sparse. 

Pictograph, in contrast, does an excellent job recognizing that our puppy is in fact a blenheim spaniel. Pictograph is the public app we built to illustrate how neural nets identify objects in images. Try it on your personal Instagram feed!

image

A 97% confidence rate in the accuracy of the prediction is a dream for automated classification. Here, the confidence is so high for two reasons. 

First, the ImageNet database used to train the Pictograph neural network has a lot of pictures of blenheim spaniels (971…and yep, it’s prime). This labelled data informs the network what a correct classification should look like. The learning mechanism (called backpropagation) then steps in and learns the network to predict the label “blenheim spaniel” when presented with new images that have similar features.

Second, the images in Ryan’s Instagram feed aren’t noisy. Note how the two images with 97% confidence rates show our puppy alone and facing the camera. This pose is similar to the stock images available on ImageNet, rendering it easier for the neural net to detect similarities. The confidence rate in the right-hand image including the human face drops to 62% because the data is noisier. It would likely drop further when presented an image of our puppy unconsciously playing Ouroboros (the mythical snake that eats its own tail).

image

But Instagram, like most data in the wild, rarely contains clean data that maps neatly to a model’s parameters or the stock photos in a training set like ImageNet. In turn, classification systems can yield confidence rates as low as 20% or 30% (or lower), generating doubts as to whether it’s worth using the technology at all. One way to improve unsatisfying results from a machine learning tool is to adopt a “human in the loop” approach, where humans step in and manually label images technology misclassifies or classifies with low confidence rates. But we decided to adopt a different approach.

ImageNet and WordNet

ImageNet is not just a collection of images arranged arbitrarily. It is organized according to the hierarchy found in the lexical database WordNet, whose “structure makes it a useful tool for computational linguistics and natural language processing.” Like a thesaurus, WordNet groups different nouns (we’ll focus on nouns because ImageNet does not use verbs, adjectives, or adverbs) together into sets of synonyms, or synsets. Synsets express concepts (e.g., car = automobile) between which WordNet can generate relationships. 

In WordNet, the most frequent relation among synsets is hyponymy and hypernymy. A bit of Ancient Greek helps here: onomas means name; hypo means under; and hyper means over. So a hyponym is an “undername,” a more specific instance of a concept (blenheim spaniel is a hyponym of dog). And a hypernym is an “overname,” a more general instance of a concept (domestic animal is a hypernym of dog). In WordNet, all noun hierarchies ultimately go up to “entity.” (A bit more Ancient Greek has muddied the metaphysical waters for centuries, with Aristotle’s unmoved mover inspiring Spinoza’s causa sui, but I digress…) 

Note that a hyponymy relation is transitive: if an blenheim spaniel is a kind of dog, and if a dog is a kind of domestic animal, then a blenheim spaniel is a kind of domestic animal. And here is the key: a neural network can use this transitive property to manage low confidence predictions. How?

Using Clustering to Unlock Network Intelligence

image

Consider this image. Fathom, the advanced deep learning prototype we provide to our clients, isn’t sure whether this is a dingo (47%) or a chihuahua (24%). One approach would be to simply select the maximum likely prediction and label this a dingo (which I believe is correct?). But that ignores other information the network is providing. A 24% confidence rate that this is a chihuahua, a 8% confidence rate that this is a basenji, and no mention that this is a siamese cat or an Arabian stallion, all tell us something: that this is not a cat and not a horse, but some type of dog. Even if the network does not deliver the most precise knowledge possible with absolute confidence, it can use the transitive relationship between hypernyms to know this is a dog (and a domestic animal, and, well, an entity of some sort). 

image

Augmenting label predictions through a clustering scheme can be incredibly important to make neural networks valuable in practice. Data teams constantly face challenges in managing noise, and those challenges won’t disappear with deep learning. The quality of the results will always depend on the extent to which new data is like or dislike data in the original training set; this relationship is further impacted by the size of the training set. 

When considering a deep learning project, one initial question data teams can ask is how important it is for the given problem that the neural net return extremely precise classifications. If you’re using a neural network to identify tumors in MRIs, you may need to go for maximum likelihood. But if you’re using the tools for fashion retail, knowing that something is a skirt as opposed to a Marc Jacobs skirt may be good enough (happy to be corrected).

After all, we may have an anonymous office dog, but that doesn’t mean we don’t adore him.

image

-Kathryn

Read more

Newer
Dec 9, 2015 · interview
Older
Nov 3, 2015 · announcement

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.