Blog

Apr 25, 2018 · newsletter

Simple Architectures Outperform Complex Ones in Language Modeling

Are novel, complex, and specialized neural network architectures always better for language modeling? Recent papers have shown otherwise. Language models are used to predict the next token given the preceeding tokens. Most operate at word-level or character-level. Word-level models have large vocabulary sizes (how many words are there in the English language?) compared to character-level models (there are 26 letters in the English language). This means that character-level models require less memory. On the other hand, when processing a sentence, character-level models see a large number of tokens (each character is a token) compared to word-level models. A large number of tokens (long sequence) is harder for neural networks because of the vanishing gradients problem.

A paper by Salesforce research shows that a properly regulated vanilla recurrent neural network (LSTM or a cheaper counter part QRNN) can achieve state-of-the-art results on both character-level and word-level datasets. The architecture is simple: the model consists of a trainable embedding layer, one or more layers of stacked recurrent neural network, and a softmax classifier. The embedding and softmax classifier layers utilize tied weights, meaning that these two layers share the same weight. To speed up the model (slow because of large vocabulary sizes), a version of adaptive softmax extended to allow for tied weights is used. The network is regularized using DropConnect (generalization of DropOut where the weights, rather than nodes, are set to zero) on the recurrent hidden-to-hidden weight matrices to prevent overfitting on the recurrent connections. This regularization approach does not require any modifications to an RNN’s formulation and allows black box RNN implementations to be used. Black box implementations are preferred because they often run faster due to low-level hardware-specific optimizations.

Relative importance of hyperparameters for word-level task on the smaller WikiText-2 dataset using QRNN (image source)

In addition to achieving state-of-the-art results, experiments with the above model show that QRNN is less successful than LSTM at character-level tasks, even with substantial hyperparameter tuning. QRNN combines the best of convolutional neural network (CNN) and recurrent neural network (RNN). It allows for parallel computation across both timestep and minibatch dimensions (CNN) while retaining sequential information (RNN). In doing so, it uses a simplified hidden-to-hidden transition function which is element-wise rather than full-matrix multiplication. The authors conjecture that this simplified transition function prevents full communication between hidden units in the RNN, making it less suitable for character-level language models. The experiments on QRNN also show that weight dropout is the most important hyperparameter - the number of layers and dimension sizes matters relatively less. We think the paper is interesting because it: i) confirms that novel and complex is not always better; ii) shows character-level and word-level models are not easily transferable; and iii) attempts to rank hyperparameter importance (useful!)

Read more

Newer
May 2, 2018 · newsletter
Older
Apr 25, 2018 · newsletter

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.