Blog

Jul 31, 2018 · newsletter

New Dynamics for Topic Models

Topic models can extract key themes from large collections of documents in an unsupervised manner, which makes them one of the most powerful tools in organizing, searching, and understanding the vast troves of text data produced by humanity. Their power derives, in part, from their in-built assumptions about the nature of text; specifically, to identify topics, the model has to give the notion of a topic a mathematical structure that echoes its significance to a human reader. In their recent paper, Scalable Generalized Dynamic Topic Models, Patrick Jähnichen, Florian Wenzel, Marius Kloft, and Stephan Mandt show scalable models that allow topics to change over time in a way that is more general than it was previously, extracting new forms of patterns from large-scale datasets.

Probabilistic Topic Models: from Static to Dynamic

Jähnchen et al.‘s work builds on the shift towards probabilistic topic models that was cemented by the publication of David Blei, Andrew Ng, and Michael Jordan’s seminal Latent Dirichlet Allocation (LDA) in 2003. The context, at the time, was given in particular by Latent Semantic Indexing (LSI) (1990), which relies on finding linear combinations of tf-idf features that explain the greatest amount of variation in a corpus. Topics, in that case, are then weighted collections of words that are particularly discriminative with respect to identifying individual documents in the corpus, and finding them requires the singular value decomposition of a document matrix.

In contrast, probabilistic topic models rely on reverse engineering an imagined statistical process that generates the documents, in which the topics are latent parameters that are inferred from the raw corpus data. The generative process for LDA, for example, is a hierarchical Bayesian model that assumes that each word within a document is drawn from one of several multinomial distributions that correspond to topics. The mixture of topics in each document, i.e. the probability with which one of the multinomial distributions will give rise to a word in the document, is in turn determined by drawing from a Dirichlet distribution. Writing this out results in an intractable expression for the probability of each word, which is conditional on the topic parameters and can be fitted to the corpus using a host of well-known methods (as well as, conveniently, packages like gensim and sklearn).

Of course, the inference process is considerably more difficult than the linear algebra required of LSI, but the process of designing a generative process makes it possible to imbue the topics with properties that highlight aspects of interest, or that make the topic model more realistic. For example, one might allow for topics to be correlated in the way that they co-occur within a document. At the expense of having to fit additional parameters, this enables surfacing topic relationships.

With Dynamic Topic Models (2006), David Blei and John Lafferty revisited the LDA process to tackle the problem of topics changing over time. While the original LDA model ignores any ordering of the documents in the corpus, dynamic topic models will take their time stamps into account. Blei and Lafferty did so by allowing the topic parameters to wander over time, specifically by imposing upon them a Wiener Process, also known as Brownian Motion. The results are highly compelling: in their paper, they analyze over a century of Science magazine articles, and automatically extract a small history of neuroscience and atomic physics. (Blei happens to be an excellent lecturer, and those looking for his talks online will find a more comfortable introduction to ideas in topic modeling than is provided by the technical papers.)

Time Evolution of two topics within the Science corpus. From: D. Blei, Probabilistic Topic Models, Communications of the ACM (2012)

Scalable New Dynamics

A Wiener process is convenient in several ways. It describes a random walk in which the value after each time step is simply the last time step, plus a random increment that is drawn from a normal distribution. In case of the LDA topic model, this allows for the multinomial distributions that represent the topics to undergo an incremental drift. In this way, the topics can change, albeit slowly enough to draw statistical robustness from older document data. The simplicity of the Wiener process also introduces temporal dynamics with the minimum number of additional parameters, and, given the difficulty of performing scalable approximate inference on topic models that implement dynamical stochastic process priors, had so far been the only process for which inference was feasible.

Jähnchen and colleagues now managed to substantially extend the spectrum of time dynamics to the general class of Gaussian Processes, of which the Wiener process is the simplest subcase. Gaussian processes are completely defined by their mean and covariance function in the same way in which a Gaussian distribution is completely defined by mean and variance, and just like the Gaussian distribution, they simultaneously represent the simplest interesting case and are extremely broadly applicable. In the study, the authors proceed by exploring the new wealth of possible functions by implementing dynamic topic models based on a three common processes used in time series modeling, comparing each to the result based on the Wiener process. The processes, which represent a small subset of realizable properties, include:

1. Ornstein-Uhlenbeck:

Brownian motion in the presence of a mean reverting force (in physics, this would for example occur for a spring that is undergoing thermal noise).

2. Squared Exponential kernel:

A process with a memory over several previous time steps, in which the correlation with past time steps decreases exponentially. That is, the process has a short-term memory that can be tuned by changing the decay length.

3. Cauchy kernel:

A process that has memory, similar to the one that corresponds to the squared exponential kernel, but in this case, the correlation with past time steps decreases polynomially. The process has a long-term memory.

Based on large scale datasets, the authors reveal that each of these approaches reveals qualitatively different phenomena, and conclude that they offer better performance along the lines of interpretability and usefulness, as well as perplexity measures. However, the greatest strength is likely the ability to flexibly experiment with different types of processes toward different tasks: processes with short-term memory can be used for event detection, whereas long-term memory has greater statistical strength. The mean-reversion property acts as a type of regularization that responds to small-scale changes and localized topics in time. Adding and multiplying kernels also results in valid kernels, enabling considerable fine tuning. While deferred to future work, periodic kernels should be able to detect recurring events.

On the whole, playing with different processes enables practitioners to intuitively adapt and experiment with dynamic topic models to analyze time-stamped corpora in a targeted way, benefiting from the extensive experience that has been gathered by studying time series in general. Apart from growing in sophistication, topic models will also grow in diversity: as the authors indicated toward the conclusion of the paper, the selection of a prior is a modeling choice that helps reveal the effects that one searches for.

Read more

Newer
Jul 31, 2018 · newsletter
Older
Jul 31, 2018 · newsletter

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.