Blog

Aug 19, 2015 · post

Machine Learning Applications in Fashion Retail

This is the first of two articles about recent developments in fashion technology. Part two will focus on implications for consumer privacy.

The next frontier for recommender systems is the retail store. We’re used to associating machine learning with ecommerce giants like Gilt and Lyst, but can data science transform physical stores like Rebecca Minkoff and Zara? The impact would be significant, as more than 90% of retail sales still occur in brick-and-mortar stores, which could use data to redefine in-store personalization.

The introduction of data collection in the retail space does not always require new tools; rather, retailers can gather granular data on customers and products by repurposing existing hardware like security cameras and clothing sensors in new ways. Developments in machine learning have made it possible to auto-process existing video feeds to track customers, from simple movement analytics to full body profiles. Smart mirrors, security cameras (CCTV) and radio-frequency identification (RFID) sensors which create rich datasets that make automated personalization in bricks & mortar scalable.

The first application of new technologies occurs before customers even enter the store. Skybox Imaging and other satellite companies use visual analytics to predict quarterly earnings from parking lot patterns over time. Companies like Nomi/Brickstream, ShopperTrak, and RetailNext, for example, focus on customer traffic analytics before and after store entry. Inside stores, analytics on customer movement inform display layout and product placement, and further quantify where to place featured products. With tools that transform brick and mortar operations into an online clickstream, Euclid boasts the ability to segment shoppers into groups based on an individual’s total number of visits and average shop time. Others anonymize this data. Prism Skylabs, for example, “uses advanced computer vision techniques so that the video feeds it presents back to its customers don’t show any people at all.” Before the interior is even constructed, architects can take advantage of massively improved virtual reality technology to go on pre-construction walkthroughs with IrisVR or InsiteVR. It’s technically possible, then, to collect similar movement data from a focus group of shoppers in advance of a building out new interiors.

Increasingly sophisticated research on body size estimation from a 2D image or video enables CCTV feeds to find humans in-store and, more recently, calculate their body measurements. Smart mirrors, like those used by Rebecca Minkoff, enable customers to request new items from inside a fitting room and checkout on their cell phone. It’s unclear, however, which retailers repurpose smart mirrors to read body data or estimate age from customers. Security cameras, as described by a 2011 NEC Laboratories paper, can find shoppers on video with facial recognition, then analyze their pose and other attributes to classify their clothing into pre-set categories. In late 2014, eBay Research proposed a refined method using clothing detection (identifying only whether objects of interest were present within an image) instead of segmentation (classifying all of the pixels of a given image). Companies like Alvanon are taking steps toward commercializing the automatic creation of body profiles of customers from video feeds with devices selected specifically for this purpose. President Ed Gribbin explains,

“Using a single-scan device we capture data anonymously and we can tell the retailer how many people walked into the store, in what size and how many of those people will fit into their clothing or not,” he explained. “By understanding the size and shape of their customers they will then be able to design clothes specifically for those customers, thereby enhancing fit satisfaction while increasing customer loyalty and retail conversion rates.” 

Because clothing is often produced weeks to months in advance of shipping, data about body measurements improves distribution by matching sizes to local customer body shapes. In the same field of body metrics, Body Labs uses research from Nils Halser and Michael J. Black to translate noisy body scans into full, movable models that are automatically processed and visualized from measurements (currently via license agreement at Brown University and the Max Planck Institute). As their tools are accessible via API, they are affordable for small-scale retailers: a Surface Pro and a single Kinect scanner suffice to create a digital avatar on the spot. If model simulation companies like Looklet expand to cover diverse body types, we might imagine a Body Labs avatar, with realistic clothing and facial features provided by Looklet, moving realistically through an advertisement on a local display.  

The missing piece is automated inventory management, to ensure the right pieces make it to the right zip codes, storage rooms, displays, and fitting rooms in the first place. Most stores still manually request new styles after running low, and physically count in-stock items when taking inventory. By contrast, using data from RFID chips, Zara obtains highly accurate information about inventory in minutes instead of hours, with a much smaller team of associates and less human error. RFID is nothing new, but adapting RFID such that it would not interfere with security sensors or walk away with the customers proved a major barrier for retailers in the past.

For existing inventory, stores can build automated recommender systems that encourage customers to try items that are in-stock, but may not be on display. Early research from a collaboration between Zara and MIT links product performance to the type of sizes available on the sales floor. When the standard sizes are missing (small, medium, or large) and only the endpoints of the size range are on display (extra-small or extra-large), the product will perform worse than a complete set of sizes and takes space from items more likely to sell. In their research, it was recommended for Zara to quickly replenish the standard sizes, remove the item from the floor entirely, or send it off to a store with a more complete set of sizes. That’s why smarter sensor inventory and smart mirrors in fitting rooms are even more important for moving excess inventory - what you see (on the floor) is not what you get. More complete information from improved sensors empowers sales associates to find related items without needing to physically check the stockroom, minimizing customer abandonment of the sale, and helping maximize local inventory turnaround. With companies like EVRYTHNG bringing Internet-of-Things thinking to items with tags as standard as barcodes, it’s possible that some of these benefits of smart tagging are accessible without a major investment in new sensors.

There is already a strong precedent for pulling up unique displays when an RFID-enabled product passes by a screen at Burberry. Like any ecommerce recommender system using collaborative filtering, it becomes increasingly easy to track whether customers wearing item x, of body size y, and estimated age range z are likely to be interested in item a, based on thousands of other customers interacting with item a. Combining the technologies surveyed in this article, retail marketing becomes: reading the body shape of a person near a display, using the RFID tag to identify the product they are interested in, generating a body avatar on the spot, overlaying a realistic simulation of the item onto the model, adding an item similar to something the person is already wearing, and triggering a hyper-personalized advertisement using in-stock merchandise.

The question is, do the privacy risks outweigh the benefits, and do the consumers understand the implications?

- Jessica Graves @sefleuria

Sources:

Business of Fashion [1], Fast Company [1], U.S. Census [1], Nomi [1], Gigaom [1], Genetec [1], Sourcing Journal Online [1], TC2 [1], CB Insights [1], International Business Times [1], EVRYTHNG [1] [2], Deloitte [1], Euclid [1-PDF], IrisVR [1], InsiteVR [1], Northwestern [1], Alvanon [1], Body Labs [1] [2], Brown University [1], Max Planck Institute [1], Looklet [1], Wall Street Journal [1] [2], IBM Developerworks [1], 3D Printing Industry [1], ShopperTrak [1], RetailNext [1], Time [1]

Read more

Newer
Sep 2, 2015 · post
Older
Aug 14, 2015 · post

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.