Blog

Sep 2, 2015 · post

D’Alembert’s Deep Dream: Bees and Nonlinear Transformations

image

Hold your hats! In the next couple of weeks we’re launching an arsenal of deep learning resources, including a feature report, a public prototype that will classify your Instagram identity and a webinar exploring the past, present and future of deep learning. Sign up here!

As a philosophical prelude to the upcoming report, we wanted to invite you to think about the emergent properties of neural nets. Let’s explore what 18th-century philosopher Denis Diderot can teach us about artificial intelligence.

Diderot was not your average Enlightenment philosopher. A philosophe, he grappled with the colossal inheritance of mechanical philosophy that dominated 18th-century intellectual circles. Spearheaded by Descartes and Newton, the mechanical view held that the material world was composed of complicated machines governed and determined by immutable laws.

But Diderot and a few contemporaries noticed that Newtonian mechanics, while powerful for describing celestial phenomena, did a poor job describing living organisms. Arguing against his predecessors, Diderot proposed that life - like sentience and consciousness - emerges from the complex interaction between many small constituent parts. He illustrates the idea in his 1769 “D’Alembert’s Dream” with the metaphor of a swarm of bees:

“Have you sometimes seen a swarm of bees going out of their hive? This cluster is like an individual. If one of the bees pinches the bee next to it, the second bee would then pinch the one next to it in turn, until in the entire cluster there would be as many sensations aroused as there are small animals. Someone who had never seen a group like that arrange itself would be tempted to assume it was one single animal with five or six hundred heads and a thousand or twelve hundred wings…”

Anyone familiar with Google’s Deep Dream might picture D’Alembert’s twelve-hundred winged swarm of bees like the many-eyed mutants generated by Google’s API. When I imported an image of a beehive, Deep Dream transformed it into a two-headed duck-rooster placidly perching in a tree:

image

But Google did not create Deep Dream only to generate psychedelic images. Rather, Deep Dream is a tool to investigate how neural networks identify features in images and encode these features at each of their various layers.

Indeed, one of the drawbacks of convolutional neural networks underlying image-object recognition work is that the very feedback mechanisms that enable us to train the network generate an “unpredictable” system that, according to Slate columnist David Auerbach, is neither rational nor algorithmic.

Convolutional networks use a class of algorithms called “kernels” that encode the spatial features of images (e.g. the sharp edge of a beehive has the same features of a duck beak) into matrices; neural nets then use vectors and linear algebra to transform the data layer by layer, first to encode the data’s features and then to filter them based on how a model has “learned” to categorize those features. But as these transformations are nonlinear, we cannot identify what features each layer is encoding.

As such, the behavior of the neural network emerges from the complex interaction at play between the various layers. To return to Diderot, we might envision the various nodes in a neural network like individual bees that, when swarming together, generate a whole that supersedes the sum of its parts to become something new.

Will these emergent properties, then, be the secret to generating artificial sentience and consciousness? John Stuart Mill, after all, claimed that the human mind emerged from the complex interaction of brain matter. But, as we explain in our upcoming deep learning report, neural networks are extraordinarily rigid in contrast to the plasticity of the human brain. To learn more, join us for the webinar we are hosting September 17!

-Kathryn

Read more

Newer
Sep 15, 2015 · post
Older
Aug 19, 2015 · post

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.