Oct 30, 2019 · newsletter

Exciting Applications of Graph Neural Networks

Graph Neural Networks (GNNs) are neural networks that take graphs as inputs. These models operate on the relational information in data to produce insights not possible in other neural network architectures and algorithms.

While there is much excitement in the deep learning community around GNNs, in industry circles, this is sometimes less so. So, I’ll review a few exciting applications empowered by GNNs.

Overview of Graphs and GNNs

A graph (sometimes called a network) is a data structure that highlights the relationships between components in the data. It consists of nodes (or vertices) and edges (or links) that act as connections between the nodes. Such a data structure has an advantage when dealing with entities that have multiple relationships.

Graph data structures have been around for centuries and their modern use cases are wide. Well-known industry applications of graphs include the social networks of Facebook and LinkedIn, and street and road networks used in navigation apps such as Google Maps and Waze.

A graph data structure (image credit)

Graph Neural Networks are inspired by deep learning architectures, and strive to apply these to graph structures. Many of these architectures are direct analogues of familiar deep neural net counterparts. These include Graph Convolutional Networks, Graph Encoders and Decoders, Graph Attention Networks, and Graph LSTMs.

GNNs have been around for about 20 years, and interest in them has dramatically increased in the last 5 years. In this time, we’ve seen new architectures emerge, novel applications realized, and new platforms and libraries enter the scene.

Below, I highlight three novel uses of GNNs.

Application 1 - Predict Side-Effects due to Drug Interactions

Every year in the United States, hundreds of thousands of seniors are hospitalized due to the negative side effects of one or more prescribed drugs. Meanwhile, the number of older people prescribed multiple drugs at a time is expanding. Given the proliferation of pharmaceuticals, it is not possible to experimentally test each combination of drugs for interaction effects. In practice, doctors rely on training, understanding a patient’s medical history, and studying literature about the drugs in use to gauge the risk of harmful side effects.

Classification and similarity algorithms have been applied to this problem before, producing interaction scores. These results have been limited for a few reasons. The scores they produce are scalar values that highlight the risk of interaction without characterizing the nature of the interaction. These algorithms are limited to pairs of drugs.

By applying a type of GNN called a Graph Convolutional Network (GCN), a team at Stanford has been able to produce a model that can predict specific drug-drug interaction effects due to the interaction of more than 2 drugs. This model, which outperforms previous methods in identifying such effects, can identify side effects that are not attributed to the individual input drugs.

Example of input graph of drug and protein interactions, and side effect edges used to train the Stanford model (image credit)

Application 2 - Node Importance in Knowledge Graphs

The knowledge graphs produced by some enterprise companies are multifaceted, containing context and relationships across several types of entities and objects. Such graphs can contain billions of objects. Amazon is one such company, using knowledge and product graphs to capture the relationships between product data and the critical context that humans have but machines lack. Such graphs enable machines to excel at downstream applications like product recommendations and question answering.

However, at the scale of data that an enterprise uses, sifting through this massive amount of context can time-consuming and will impede graph-enabled applications.

To ameliorate this, Amazon has developed a GNN, called GENI (GNN for Estimating Node Importance), to distinguish the trivial facts and data from critical information contained in a knowledge graph. This algorithm was tested on knowledge graphs of movies, music, and general facts - but has wide ranging implications when applied to large scale graphs.

Application 3 - Enhancing Computer Vision with Physical Intuition

Computer Vision has advanced rapidly with the help of deep learning - in areas of image classification, object detection, and pixel segmentation (among others). Machines can distinguish and identify objects in images and video. There is still much development needed for machines to have the visual intuition of a human.

One type of human intuition is related to physics. If we see a ball bounce, we can reason about its trajectory. Even for more dynamic interactions among several objects, we can make reasonable predictions about what will happen without having a deep knowledge about the laws of motion or Newton’s three laws.

Interactive Networks are now giving machines this same physical intuition. This results in models that can predict what will happen over an extended time, given a few frames of a video scene. An example from DeepMind combines a CNN that distinguishes objects in a scene with an Interactive Network, which reasons about the relationships between these objects. The results of these models have been posted in videos, which are overlaid on CIFAR images. These videos compare the projected trajectories of objects against those predicted by a physics simulator.

Examples of trajectories done by a physics simulator (middle), compared with predicted trajectories over 40-60 video frames (right) (image credit)

Closing Thoughts

The applications discussed above highlight the functional variety of GNNs. In the first application, the GNN solution is used to predict graph edges. In the second, GNNs are used to score the importance of graph nodes. The third application uses GNNs predict the future states of a network.

These 3 applications only scratch the surface of the work being done around GNNs. The growth in this area is accelerating as people try to expand the usage of their existing graph-data. Researchers are also taking data that is in relational or document form, and reframing it in graph structures to take advantage of GNNs and other graph-analytical tools and methods. Though the above examples use GNN architectures for specific purposes, the potential to apply their solutions to similar problems in different domains is exciting.

Read more

Oct 30, 2019 · newsletter
Sep 27, 2019 · newsletter

Latest posts

May 5, 2022 · post

Neutralizing Subjectivity Bias with HuggingFace Transformers

by Andrew Reed · Subjective language is all around us – product advertisements, social marketing campaigns, personal opinion blogs, political propaganda, and news media, just to name a few examples. From a young age, we are taught the power of rhetoric as a means to influence others with our ideas and enact change in the world. As a result, this has become society’s default tone for broadcasting ideas. And while the ultimate morality of our rhetoric depends on the underlying intent (benevolent vs. more
Mar 22, 2022 · post

An Introduction to Text Style Transfer

by Andrew Reed · Today’s world of natural language processing (NLP) is driven by powerful transformer-based models that can automatically caption images, answer open-ended questions, engage in free dialog, and summarize long-form bodies of text – of course, with varying degrees of success. Success here is typically measured by the accuracy (Did the model produce a correct response?) and fluency (Is the output coherent in the native language?) of the generated text. While these two measures of success are of top priority, they neglect a fundamental aspect of language – style. more
Jan 31, 2022 · post

Why and How Convolutions Work for Video Classification

by Daniel Valdez-Balderas · Video classification is perhaps the simplest and most fundamental of the tasks in the field of video understanding. In this blog post, we’ll take a deep dive into why and how convolutions work for video classification. Our goal is to help the reader develop an intuition about the relationship between space (the image part of video) and time (the sequence part of video), and pave the way to a deep understanding of video classification algorithms. more
Dec 14, 2021 · post

An Introduction to Video Understanding: Capabilities and Applications

by Daniel Valdez Balderas · Video footage constitutes a significant portion of all data in the world. The 30 thousand hours of video uploaded to Youtube every hour is a part of that data; another portion is produced by 770 million surveillance cameras globally. In addition to being plentiful, video data has tremendous capacity to store useful information. Its vastness, richness, and applicability make the understanding of video a key activity within the field of computer vision. more
Sep 22, 2021 · post

Automatic Summarization from TextRank to Transformers

by Melanie Beck · Automatic summarization is a task in which a machine distills a large amount of data into a subset (the summary) that retains the most relevant and important information from the whole. While traditionally applied to text, automatic summarization can include other formats such as images or audio. In this article we’ll cover the main approaches to automatic text summarization, talk about what makes for a good summary, and introduce Summarize. – a summarization prototype we built that showcases several automatic summarization techniques. more
Sep 21, 2021 · post

Extractive Summarization with Sentence-BERT

by Victor Dibia · In extractive summarization, the task is to identify a subset of text (e.g., sentences) from a document that can then be assembled into a summary. Overall, we can treat extractive summarization as a recommendation problem. That is, given a query, recommend a set of sentences that are relevant. The query here is the document, relevance is a measure of whether a given sentence belongs in the document summary. How we go about obtaining this measure of relevance varies (a common dilemma for any recommendation system). more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)


In-depth guides to specific machine learning capabilities


Machine learning prototypes and interactive notebooks


A usable library for question answering on large datasets.

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter