Blog

Oct 30, 2019 · newsletter

Exciting Applications of Graph Neural Networks

Graph Neural Networks (GNNs) are neural networks that take graphs as inputs. These models operate on the relational information in data to produce insights not possible in other neural network architectures and algorithms.

While there is much excitement in the deep learning community around GNNs, in industry circles, this is sometimes less so. So, I’ll review a few exciting applications empowered by GNNs.

Overview of Graphs and GNNs

A graph (sometimes called a network) is a data structure that highlights the relationships between components in the data. It consists of nodes (or vertices) and edges (or links) that act as connections between the nodes. Such a data structure has an advantage when dealing with entities that have multiple relationships.

Graph data structures have been around for centuries and their modern use cases are wide. Well-known industry applications of graphs include the social networks of Facebook and LinkedIn, and street and road networks used in navigation apps such as Google Maps and Waze.

A graph data structure (image credit)

Graph Neural Networks are inspired by deep learning architectures, and strive to apply these to graph structures. Many of these architectures are direct analogues of familiar deep neural net counterparts. These include Graph Convolutional Networks, Graph Encoders and Decoders, Graph Attention Networks, and Graph LSTMs.

GNNs have been around for about 20 years, and interest in them has dramatically increased in the last 5 years. In this time, we’ve seen new architectures emerge, novel applications realized, and new platforms and libraries enter the scene.

Below, I highlight three novel uses of GNNs.

Application 1 - Predict Side-Effects due to Drug Interactions

Every year in the United States, hundreds of thousands of seniors are hospitalized due to the negative side effects of one or more prescribed drugs. Meanwhile, the number of older people prescribed multiple drugs at a time is expanding. Given the proliferation of pharmaceuticals, it is not possible to experimentally test each combination of drugs for interaction effects. In practice, doctors rely on training, understanding a patient’s medical history, and studying literature about the drugs in use to gauge the risk of harmful side effects.

Classification and similarity algorithms have been applied to this problem before, producing interaction scores. These results have been limited for a few reasons. The scores they produce are scalar values that highlight the risk of interaction without characterizing the nature of the interaction. These algorithms are limited to pairs of drugs.

By applying a type of GNN called a Graph Convolutional Network (GCN), a team at Stanford has been able to produce a model that can predict specific drug-drug interaction effects due to the interaction of more than 2 drugs. This model, which outperforms previous methods in identifying such effects, can identify side effects that are not attributed to the individual input drugs.

Example of input graph of drug and protein interactions, and side effect edges used to train the Stanford model (image credit)

Application 2 - Node Importance in Knowledge Graphs

The knowledge graphs produced by some enterprise companies are multifaceted, containing context and relationships across several types of entities and objects. Such graphs can contain billions of objects. Amazon is one such company, using knowledge and product graphs to capture the relationships between product data and the critical context that humans have but machines lack. Such graphs enable machines to excel at downstream applications like product recommendations and question answering.

However, at the scale of data that an enterprise uses, sifting through this massive amount of context can time-consuming and will impede graph-enabled applications.

To ameliorate this, Amazon has developed a GNN, called GENI (GNN for Estimating Node Importance), to distinguish the trivial facts and data from critical information contained in a knowledge graph. This algorithm was tested on knowledge graphs of movies, music, and general facts - but has wide ranging implications when applied to large scale graphs.

Application 3 - Enhancing Computer Vision with Physical Intuition

Computer Vision has advanced rapidly with the help of deep learning - in areas of image classification, object detection, and pixel segmentation (among others). Machines can distinguish and identify objects in images and video. There is still much development needed for machines to have the visual intuition of a human.

One type of human intuition is related to physics. If we see a ball bounce, we can reason about its trajectory. Even for more dynamic interactions among several objects, we can make reasonable predictions about what will happen without having a deep knowledge about the laws of motion or Newton’s three laws.

Interactive Networks are now giving machines this same physical intuition. This results in models that can predict what will happen over an extended time, given a few frames of a video scene. An example from DeepMind combines a CNN that distinguishes objects in a scene with an Interactive Network, which reasons about the relationships between these objects. The results of these models have been posted in videos, which are overlaid on CIFAR images. These videos compare the projected trajectories of objects against those predicted by a physics simulator.

Examples of trajectories done by a physics simulator (middle), compared with predicted trajectories over 40-60 video frames (right) (image credit)

Closing Thoughts

The applications discussed above highlight the functional variety of GNNs. In the first application, the GNN solution is used to predict graph edges. In the second, GNNs are used to score the importance of graph nodes. The third application uses GNNs predict the future states of a network.

These 3 applications only scratch the surface of the work being done around GNNs. The growth in this area is accelerating as people try to expand the usage of their existing graph-data. Researchers are also taking data that is in relational or document form, and reframing it in graph structures to take advantage of GNNs and other graph-analytical tools and methods. Though the above examples use GNN architectures for specific purposes, the potential to apply their solutions to similar problems in different domains is exciting.

Read more

Newer
Oct 30, 2019 · newsletter
Older
Sep 27, 2019 · newsletter

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.