Blog

Oct 30, 2019 · newsletter

Fuzzy People

While preparing for a recent edition of the Federated Learning talk I often give at conferences, I encountered this tweet, which includes a demonstration of real-time multi-person segmentation on a smartphone.

Some useful terminology here:

  • Object detection typically refers to identifying and localising objects (such as people!) in an image, and surrounding them with a bounding box.
  • Object segmentation labels each pixel of the image with a class (for instance: “person,” “car,” “cat,” …).

Segmenting multiple people in an image is substantially harder than segmenting a single person, because identifing the parts of the image that belong to each person essentially requires modeling each person’s pose. Without understanding human poses, how would our function-approximating neural network know that an arm around a shoulder belongs to person one, rather than person two?

This technology working on a mobile device in real-time is impressive.

There is good reason to be concerned about the malicious or misguided use of facial recognition technology to invade personal privacy. However, there are many conceivable applications for computer vision in public spaces which do not require incidental privacy violation - monitoring road traffic, for example.

A potential use of the raft of face-swapping apps recently launched is protecting the identity of people in the background of video or photos, while maintaining the realism of the image.

This naturally raises the question: what is private?

If you know me well, you can probably recognise me with an obfuscated face, based on clothes and surroundings. The overt pixellation in the mobile demo appealed to me. Because vision so viscerally connects to our senses, it strikes me as a fascinating arena in which to test theoretical measures of privacy.

I managed to find a few older papers covering this idea - though given it’s import, it feels under-explored.

When in doubt, play.

Thanks to the ready availability of pre-trained models, TensorFlow.js, Observable notebooks, and some free time at a conference, I could reasonably straightforwardly construct a person pixellator, which you can try for yourself here: Fuzzy People.

It can take an input image, such as this:

Brooklyn Bridge with pedestrians (image courtesy of unsplash.com)

And output (an attempt at) a more private version:

Brooklyn Bridge with fuzzy pedestrians

Since the picture is really intended to be of the Brooklyn Bridge and Manhattan skyline, we’ve done the pedestrians a favour and hidden their identities.

Clearly, it doesn’t work perfectly.

Some experimentation reveals it to work best when the people are in the foreground, clearly separated, there are only a few of them, and the picture was taken in reasonable lighting and weather conditions.

Nonetheless, I’m impressed by how well it sometimes does work, given that it is running some quite sophisticated models entirely inside a web browser.

The pixellation technique used is simple: for each pixel that the model identifies as a person (the model here is a combination of a bounding box with COCO-SSD, and single person segmentation with BodyPix), replace it with a randomly selected pixel from within an adjustable region. At low noise, where the region the random pixel is selected from is small, people in the images are still human identifiable. As noise is increased, people progressively become less person-like and more static.

Finding a less intrusive - but still highly private - means of masking people from images is left as an exercise to the research community.

The app is extremely early stage work, but I think credit is due to the open source community for providing pre-trained models to enable the creation of something that would have seemed magic a decade ago in a day or so of hacking. Certainly, we are past the point where some elements of computer vision can be considered as commodity: simply import the “detect person” function.

A side-note on the pace of change in this space:

Alas, much of my work is wasted. About a week after I made the notebook work, a multi-person version of BodyPix was released! While I confess to feeling slightly stung by having sunk a few hours into pixel manipulation to combine a bounding box model with a single-person segmentation model that has ultimately proved unnecessary, I’m excited to try out the new model. It certainly brings home the feeling of rapid progress in computer vision technology.

Read more

Newer
Nov 21, 2019 · newsletter
Older
Oct 30, 2019 · newsletter

Latest posts

Sep 22, 2021 · post

Automatic Summarization from TextRank to Transformers

by Melanie Beck · Automatic summarization is a task in which a machine distills a large amount of data into a subset (the summary) that retains the most relevant and important information from the whole. While traditionally applied to text, automatic summarization can include other formats such as images or audio. In this article we’ll cover the main approaches to automatic text summarization, talk about what makes for a good summary, and introduce Summarize. – a summarization prototype we built that showcases several automatic summarization techniques.
...read more
Sep 21, 2021 · post

Extractive Summarization with Sentence-BERT

by Victor Dibia · In extractive summarization, the task is to identify a subset of text (e.g., sentences) from a document that can then be assembled into a summary. Overall, we can treat extractive summarization as a recommendation problem. That is, given a query, recommend a set of sentences that are relevant. The query here is the document, relevance is a measure of whether a given sentence belongs in the document summary. How we go about obtaining this measure of relevance varies (a common dilemma for any recommendation system).
...read more
Sep 20, 2021 · post

How (and when) to enable early stopping for Gensim's Word2Vec

by Melanie Beck · The Gensim library is a staple of the NLP stack. While it primarily focuses on topic modeling and similarity for documents, it also supports several word embedding algorithms, including what is likely the best-known implementation of Word2Vec. Word embedding models like Word2Vec use unlabeled data to learn vector representations for each token in a corpus. These embeddings can then be used as features in myriad downstream tasks such as classification, clustering, or recommendation systems.
...read more
Jul 7, 2021 · post

Exploring Multi-Objective Hyperparameter Optimization

By Chris and Melanie. The machine learning life cycle is more than data + model = API. We know there is a wealth of subtlety and finesse involved in data cleaning and feature engineering. In the same vein, there is more to model-building than feeding data in and reading off a prediction. ML model building requires thoughtfulness both in terms of which metric to optimize for a given problem, and how best to optimize your model for that metric!
...read more
Jun 9, 2021 ·

Deep Metric Learning for Signature Verification

By Victor and Andrew. TLDR; This post provides an overview of metric learning loss functions (constrastive, triplet, quadruplet, and group loss), and results from applying contrastive and triplet loss to the task of signature verification. A complete list of the posts in this series is outlined below: Pretrained Models as Baselines for Signature Verification -- Part 1: Deep Learning for Automatic Offline Signature Verification: An Introduction Part 2: Pretrained Models as Baselines for Signature Verification Part 3: Deep Metric Learning for Signature Verification In our previous blog post, we discussed how pretrained models can serve as strong baselines for the task of signature verification.
...read more
May 27, 2021 · post

Pretrained Models as a Strong Baseline for Automatic Signature Verification

By Victor and Andrew. Figure 1. Baseline approach for automatic signature verification using pretrained models TLDR; This post describes how pretrained image classification models can be used as strong baselines for the task of signature verification. The full list of posts in the series is outlined below: Pretrained Models as Baselines for Signature Verification -- Part 1: Deep Learning for Automatic Offline Signature Verification: An Introduction Part 2: Pretrained Models as Baselines for Signature Verification Part 3: Deep Metric Learning for Signature Verification As discussed in our introductory blog post, offline signature verification is a biometric verification task that aims to discriminate between genuine and forged samples of handwritten signatures.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com
Notebook

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.
https://colab.research.google.com/drive/1pjPzsw_uZew-Zcz646JTkRDhF2GkPk0N

About

Cloudera Fast Forward is an applied machine learning reseach group.
Cloudera   Blog   Twitter