Sep 27, 2019 · newsletter

Theories of (machine) learning should shape horizon scanning - not just application

And no, not this kind of horizon… (image credit)

In a recent newsletter, Alice mused about how evolving views and theories of learning are shaping machine learning research and practice. If you’re an enterprise data scientist you’re very much focused on the practice of machine learning. Limited awareness of what’s shaping the machine learning breakthroughs that you’re trying to apply to real-life problems makes it easy to get locked into certain approaches and to inherit blind spots. The value of this type of epistemological insight to data science practitioners is obvious, but why should business leaders care about it, too?

One good reason is that it makes for more discerning consumption of news about machine learning developments, and this, in turn, sharpens business leaders’ horizon scanning capability. It’s useful to know that there isn’t wholesale consensus on the most fruitful path to advancing machine learning. The whole point of horizon scanning is to work out the best way to help your organization prepare and benefit from the broader trends, whether they are driven by technology, government policy or shifting consumer tastes. This, in turn, directly shapes the level and pace of your investment in your applied machine learning environment - specifically: talent, infrastructure, and governance. It should also guide your decisions about when and how to go about integrating machine learning into your business operations.

Digging into what are tech companies are doing as well as thinking

Several of the thought leaders referenced in Alice’s article are based in large tech companies. These organizations are increasingly sources of cutting edge machine learning research. And while the scale of industry-driven research has raised some valid concerns, there are some very real benefits to businesses:

  • First, industry-driven research affords business leaders the opportunity to make informed bets about the broad viability of a particular approach to machine learning (beyond the soundness of the technology) before deciding to invest heavily themselves. For example, given Google’s and Facebook’s heavy investments in deep learning, it’s reasonable to bet on the emergence of a number of open source data science tools to facilitate this approach. This matters because access to these types of tools is critical for impactful and cost-effective data science practice within enterprises - and building them is notoriously hard to do. The availability of a broad range of open source tools (and libraries) maintained and supported by an enthusiastic and committed community is an important point of consideration when thinking about how to reliably and affordably build out your machine learning infrastructure planning. This is true even if you are swayed by the views of people such as Gary Marcus, who has expressed skepticism about deep learning as the sole path towards artificial general intelligence, and instead advocates a hybrid approach that incorporates not just supervised forms of deep learning, but also techniques such as symbol-manipulation and (a re-conceptualized form of) unsupervised learning.

  • Second, the publicly accessible accounts of how these tech companies are implementing the fruit of their research provides a window into the practical challenges of trying to integrate machine learning into more and more of their day-to-day business operations, and doing so at scale. From a horizon scanning perspective, this is a rich source for useful insights into what could go wrong and what appears to work well. Further, because some of these organizations publish both accounts of their research and also of their (business) implementation efforts, you can read others’ assessments of both of these things. These external reviews/commentary lack the rigor of academic peer reviews, but they do provide useful alternative perspectives for business leaders looking to assess the merits or demerits of a particular approach to applied machine learning. Take for example, Gary Marcus’s view of DeepMind’s framing of its systems as capable of “autonomously learn[ing] how to model other agents in its world” as misleading. In a blog post on DeepMind’s Machine Theory of Mind paper, he remarks, “in fact, in close parallel with the Go work, DeepMind has quietly built in a wealth of prior assumptions.”

You may disagree with his assessment of reinforcement learning - or may not be certain what to think about it - but if reinforcement learning is something your organization is considering, then his comments highlight implementation considerations that are worth discussing with your in-house technical team.

And, as noted above, that’s the whole point of horizon scanning - trying to predict the challenges and opportunities that lie ahead, and trying to work out how best to navigate them before they become a reality. Asking good questions that lead to good conversations - with both your ML practitioners and operation teams - is a good way of doing this.

If you want to dedicate more time to understanding the current machine learning landscape, but aren’t sure where to start, I recommend Adrian Colyer’s summaries of the Microsoft, Facebook and Google papers on their implementation efforts as a good place to start. I think he’s done a good job of capturing the most interesting points in those papers, and he presents them in an accessible way.

Read more

Oct 30, 2019 · newsletter
Sep 27, 2019 · newsletter

Latest posts

May 5, 2022 · post

Neutralizing Subjectivity Bias with HuggingFace Transformers

by Andrew Reed · Subjective language is all around us – product advertisements, social marketing campaigns, personal opinion blogs, political propaganda, and news media, just to name a few examples. From a young age, we are taught the power of rhetoric as a means to influence others with our ideas and enact change in the world. As a result, this has become society’s default tone for broadcasting ideas. And while the ultimate morality of our rhetoric depends on the underlying intent (benevolent vs. more
Mar 22, 2022 · post

An Introduction to Text Style Transfer

by Andrew Reed · Today’s world of natural language processing (NLP) is driven by powerful transformer-based models that can automatically caption images, answer open-ended questions, engage in free dialog, and summarize long-form bodies of text – of course, with varying degrees of success. Success here is typically measured by the accuracy (Did the model produce a correct response?) and fluency (Is the output coherent in the native language?) of the generated text. While these two measures of success are of top priority, they neglect a fundamental aspect of language – style. more
Jan 31, 2022 · post

Why and How Convolutions Work for Video Classification

by Daniel Valdez-Balderas · Video classification is perhaps the simplest and most fundamental of the tasks in the field of video understanding. In this blog post, we’ll take a deep dive into why and how convolutions work for video classification. Our goal is to help the reader develop an intuition about the relationship between space (the image part of video) and time (the sequence part of video), and pave the way to a deep understanding of video classification algorithms. more
Dec 14, 2021 · post

An Introduction to Video Understanding: Capabilities and Applications

by Daniel Valdez Balderas · Video footage constitutes a significant portion of all data in the world. The 30 thousand hours of video uploaded to Youtube every hour is a part of that data; another portion is produced by 770 million surveillance cameras globally. In addition to being plentiful, video data has tremendous capacity to store useful information. Its vastness, richness, and applicability make the understanding of video a key activity within the field of computer vision. more
Sep 22, 2021 · post

Automatic Summarization from TextRank to Transformers

by Melanie Beck · Automatic summarization is a task in which a machine distills a large amount of data into a subset (the summary) that retains the most relevant and important information from the whole. While traditionally applied to text, automatic summarization can include other formats such as images or audio. In this article we’ll cover the main approaches to automatic text summarization, talk about what makes for a good summary, and introduce Summarize. – a summarization prototype we built that showcases several automatic summarization techniques. more
Sep 21, 2021 · post

Extractive Summarization with Sentence-BERT

by Victor Dibia · In extractive summarization, the task is to identify a subset of text (e.g., sentences) from a document that can then be assembled into a summary. Overall, we can treat extractive summarization as a recommendation problem. That is, given a query, recommend a set of sentences that are relevant. The query here is the document, relevance is a measure of whether a given sentence belongs in the document summary. How we go about obtaining this measure of relevance varies (a common dilemma for any recommendation system). more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)


In-depth guides to specific machine learning capabilities


Machine learning prototypes and interactive notebooks


A usable library for question answering on large datasets.

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter