Blog

Apr 26, 2016 · guest post

Making a Case for Machine Learning to Legal Departments

image
kCura is an electronic discovery (e-Discovery) software company with long experience helping lawyers adopt tools to support litigation. This guest blog post from Dean Gonsowski, kCura’s VP of Business Development, provides tips to help data scientists explain the value of machine learning to lawyers.

Electronic discovery software helps manage the exchange of electronically stored information, documents that could be used as evidence in various forms of litigation like investigations or contract reviews. It is not used exclusively by law firms or service providers though—today’s corporate counsel are facing constant pressure to reduce costs in litigation, especially when faced with numerous discovery requests. This trend is getting more challenging due to exponential data growth and content proliferation. IDC’s Digital Universe study predicts the world’s data will amount to 44 zettabytes by 2020, which will have a significant impact on the compliance and e-discovery needs of organizations on a global scale. Corporate legal departments are aware of the trend, but an often-heard challenge is understanding what tools are available to combat this data deluge.

Several years ago the Rand Institute of Civil Justice conducted a study about litigant expenditures in e-discovery, where it found that corporations spend just eight percent of their discovery costs on collecting the data, 19 percent on processing and normalizing the data, and a whopping 73 percent on mining or “reviewing” the data. Review may be the driving feature of e-discovery, the process of finding the documents that matter for a legal matter. By applying text analytics to this “review” phase, corporations can start driving greater savings across the entire e-discovery spectrum.

The report suggests that the increasing volume of digital records makes techniques leveraging machine learning the most cost-effective way to conduct review. Supervised or active machine learning, for instance, can be used to predict the responsiveness of documents using a labeled sample set. From my experience, most savvy practitioners see this type of machine learning as an obvious way to increase efficiencies in the review process, but a number of factors have limited adoption. As a result, there is a conspicuous “consumption gap” in legal technology, which emerges from the difference in the current use of technology versus its capabilities. A 2015 PC –TAR Focus Report prepared by the eDJ Group noted that counsel and management often resist analytics technologies due to their limited knowledge of software capabilities, limitations, potential costs and applications. In other cases, the resistance is simply in the form of the refrain that the old ways are good enough.

Fortunately, data scientists’ practical experience deriving insight from data can help drive the adoption of machine learning in the legal department. Data scientists can use their experience  and wins to help legal departments grasp how data technologies can support experts to lead them to the right information. Corporate counsel will need to understand some basic data science to leverage predictive analytics in e-discovery, which can help the team get to the facts of a case faster. Data scientists have the practical responsibility of guiding their corporate legal departments toward informed text analytics strategies, helping them to positively view text analytics as a cost and time-saving solution.

As a data scientist, there are several ways you can help corporate counsel shift attitudes about machine learning and conquer the consumption gap:

1. Understand the technology

According to the Coalition of Technology Resources for Lawyers (CTRL), there are a range of machine learning applications that can be deployed to facilitate e-discovery. Corporate counsel will hear the word “predictive coding,” which refers to either a passive or active supervised learning approach. Another common term is technology-assisted review (TAR), which in addition to predictive coding includes search, near-duplicate document detection, and email threading. The important point to share with your legal team is that machine learning and other text analytics tools help augment lawyers’ decisions. The tools do not need to take control of the process.

2. Prove the machine learning methodology can hold up in court

While predictive coding and TAR has been around for several years, legal professionals do have a responsibility for a defensible case in court, and might be worried about judicial approval for these somewhat newer tools. Fortunately, you can explain the defensibility of analytics in e-discovery by referencing well-known court cases such as Rio Tinto Plc v. Vale S.A. or more recent decisions such as Pyrrho Investments Ltd. v. MWB Property Ltd., where judges in both the United States and the United Kingdom cited greater consistency, proportionality (putting in effort proportional to the stakes of the case) and cost savings as reasons for using an assistive coding method like TAR over a less-efficient manual review process.

3. Utilize available workflows

Look for cases that would be a good fit for analytics. It’s best to leverage these type of tools from start to finish in a project. Techniques email threading, for example, can quicken review, as teams can identify and discard non-relevant email threads as they clean up their data. Understand the best practices and proven workflows for your legal team’s chosen technology, as your expertise in text analytics could be leveraged at the beginning of the adoption cycle and all the way through a case.

The Future

Early adopters are using emerging text analytics technologies like predictive coding without too much fanfare, and these technologies will be the industry standard for attorneys in the future. The only remaining question is how soon practitioners cross the chasm and start embracing these technologies in the near term, and how they can be helped along the way.

- Dean Gonsowski

Read more

Newer
May 3, 2016 · post
Older
Apr 25, 2016 · post

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.