Dec 8, 2016 · post

Dimensionality Reduction and Intuition


“I call our world Flatland, not because we call it so, but to make its nature clearer to you, my happy readers, who are privileged to live in Space.”

So reads the first sentence of Edwin Abbott Abbott’s 1884 work of science fiction and social satire, Flatland: A Romance of Many Dimensions. At the time, Abbott used contemporary developments in the fields of geometry and topology (he was a contemporary of Poincaré) to illustrate the rigid social hierarchies in Victorian England. A century later, with machine learning algorithms playing an increasingly prominent role in our daily lives, Abbott’s play on the conceptual leaps required to cross dimensions is relevant again. This time, however, the dimensionality shifts lie not between two human social classes, but between the domains of human reasoning and intuition and machine reasoning and computation.

Much of the recent excitement around artificial intelligence stems from the fact that computers are newly able to process data historically too complex to analyze. At Fast Forward Labs, we’ve been excited by new capabilities to use computers to perceive objects in images, extract the most important sentences from long bodies of text, and translate between languages. But making complex data like images or text tractable for machines involves representing the data in high-dimensional vectors, long strings of numbers that encode the complexity of pixel clusters or relationships between words. The problem is these vectors become so large that it’s hard for humans to make sense of them: plotting them often requires a space of way more than the three dimensions we live in and perceive!

On the other hand, machine learning techniques that entirely remove humans from the loop, like automatic machine learning and unsupervised learning, are still active areas of research. For now, machines perform best when nudged by humans. And that means we need a way to reverse engineer the high-dimensionality vectors machines compute in back down to the two and three dimensional spaces our visual systems have evolved to make sense of. 

What follows is a brief survey of some tools available to reduce and visualize high-dimensional data. Send us a note at if you know of others!

Google’s Embedding Projector

Yesterday, Google open-sourced the Embedding Projector, a web application for interactive visualization and analysis of high-dimensional data that is part of TensorFlow. The release highlights how the tool helps researchers navigate embeddings, or mathematical vector representations of data, which have proved useful for tasks like natural language processing. A popular example is to use embeddings to do “algebra” on words, using the space between vectors as a proxy for semantic relationships like man:king::woman:queen. Embedding Projector includes a few dimensionality reduction techniques like Principal Component Analysis (PCA) and t-SNE. Here’s an example of using PCA on an image data set (done before Google’s release).


t-Distributed Stochastic Neighbor Embedding (t-SNE) is an increasingly popular non-linear dimensionality reduction technique useful for exploring local neighborhoods and finding clusters in data. As explained in this post, t-SNE algorithms adapt transformations to the structure of the input data they work on, and have a tuneable parameter called “perplexity” that “says (loosely) how to balance attention between local and global aspects of your data.” While the algorithms are powerful, their output representations must be read with care, as the perplexity parameter can create confusion. 

Visualization of how distance between clusters vary widely under different parameters on a t-SNE algorithm.

Mike Tyka, a machine learning artist, has used t-SNE to cluster images per similarity in Deep Dream’s neural network architecture. The resulting “map” reveals some interesting conclusions, showing, for example, that Deep Dream clusters violins near trombones. As the shapes of these two instruments differ to our eyes, their proximity in the neural network space may mean that Deep Dream uses the context of “people playing instruments” as a discriminatory feature for classification. 

Topological Data Analysis

Palo Alto-based Ayasdi uses theory from topology, the study of geometrical properties that stay constant even when shapes are transformed, to help humans find patterns in large data sets. As CEO Gurjeet Singh explains in this O’Reilly interview, the two key benefits of using topology for machine learning are:

  • The ability to combine results from different machine learning algorithms, while still maintaining guarantees about the underlying shapes or distributions
  • The ability to discover the underlying shape of data so you don’t assume it and, thereby, impact the parameters for an optimization problem

Ayasdi’s product visualizes relationships in data as graphs, enabling users to visually perceive relationships that would be hard to uncover in the language of formal equations. We love the parallel insight that we, as humans, excel at what topologists call “deformation invariance,” the property that the letter A is still the letter A in different fonts. 

Machines using an autoencoder to reconstruct digits with moderate deformation invariance, as we explained in this blog post.

Data Visualization for the 3-D Web

Finally, Datavized is working on a data analytics tool fit for the 3-D web. While they’ve yet to work on dimensionality reduction, they have embarked on projects to give consumers of data a more empathic, first-person interpretation of statistics and conclusions. We look forward to the release of their product in 2017!


Our ability to represent rich, complex data, like images and text, in numbers required for mathematical functions on computers requires a Mephistophelean deal with the devil. These high-dimensional vectors are impossible to understand and interpret. But there’s been great progress in dimensionality reduction and visualization tools that enable us, in our Flatland, to make sense of the strange, cold world of machine intelligence. 

- Kathryn

Read more

Dec 12, 2016 · guest post
Nov 23, 2016 · whitepaper

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series. more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck. more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers. more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance. more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books. more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team. more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)


In-depth guides to specific machine learning capabilities


Machine learning prototypes and interactive notebooks

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!


A usable library for question answering on large datasets.

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.