Blog

Jan 18, 2017 · post

New Research on Probabilistic Programming

image

We’re excited to release the latest research from our machine intelligence R&D team! 

This report and prototype explore probabilistic programming, an emerging programming paradigm that makes it easier to construct and fit Bayesian inference models in code. It’s advanced statistics, simplified for data scientists looking to build models fast.

Bayesian inference has been popular in scientific research for a long time. The statistical technique allows us to encode expert knowledge into a model by stating prior beliefs about what we think our data looks like. These prior beliefs are then updated in light of new data, providing not one prediction, but a full distribution of likely answers with baked-in confidence rates. This allows us to asses the risk of our decisions with more nuance.

Bayesian methods lack widespread commercial use because they’re tough to implement. But probabilistic programming reduces what used to take months of thorny statistical sampling into an afternoon of work.

This will further expand the utility of machine learning. Bayesian models aren’t black boxes, a criterion for regulated industries like healthcare. Unlike deep learning networks, they don’t require large, clean data sets or large amounts of GPU processing power to deliver results. And they bridge human knowledge with data, which may lead to breakthroughs in areas as diverse as anomaly detection and music analysis

Our work on probabilistic programming includes two prototypes and a report that teaches you:

  • How Bayesian inference works and where it’s useful
  • Why probabilistic programming is becoming possible now
  • When to use probabilistic programming and what the code looks like
  • What tools and languages exist today and how they compare
  • Which vendors offer probabilistic programming products

Finally, as in all our research, we predict where this technology is going, and applications for which it will be useful in the next couple of years.

Probabilistic Real Estate Prototype

One powerful feature of probabilistic programming is the ability to build hierarchical models, which allow us to group observations together and learn from their similarities. This is practical in contexts like user segmentation: individual users often shares tastes with other users of the same sex, age group, or location, and hierarchical models provide more accurate predictions about individuals by leveraging learnings from the group.

image

We explored using probabilistic programming for hierarchical models in our Probabilistic Real Estate prototype. This prototype predicts future real estate prices across the New York City boroughs. It enables you to input your budget (say $1.6 million) and shows you the probability of finding properties in that price range across different neighborhoods and future time periods.

Hierarchical models helped make predictions in neighborhoods with sparse pricing data. In our model, we declared that apartments are in neighborhoods and neighborhoods are in boroughs; on average, apartments in one neighborhood are more similar to others in the same location than elsewhere. By modeling this way, we could learn about the West Village not only from the West Village, but also from the East Village and Brooklyn. That means, with little data about the West Village, we could use data from the East Village to fill in the gaps! 

Many companies suffer from imperfect, incomplete data. These types of inferences can be invaluable to improve predictions based on real-world dependencies.

Play around with the prototype! You’ll see how the color gradients give you an intuitive sense for what probability distributions look like in practice.

Read more

Newer
Jan 25, 2017 · interview
Older
Jan 11, 2017 · interview

Latest posts

Jul 7, 2021 · post

Exploring Multi-Objective Hyperparameter Optimization

By Chris and Melanie. The machine learning life cycle is more than data + model = API. We know there is a wealth of subtlety and finesse involved in data cleaning and feature engineering. In the same vein, there is more to model-building than feeding data in and reading off a prediction. ML model building requires thoughtfulness both in terms of which metric to optimize for a given problem, and how best to optimize your model for that metric!
...read more
Jun 9, 2021 ·

Deep Metric Learning for Signature Verification

By Victor and Andrew. TLDR; This post provides an overview of metric learning loss functions (constrastive, triplet, quadruplet and group loss), and results from applying contrastive and triplet loss to the task of signature verification. Other posts in the series are listed below: Pretrained Models as Baselines for Signature Verification -- Part 1: Deep Learning for Automatic Offline Signature Verification: An Introduction Part 2: Pretrained Models as Baselines for Signature Verification Part 3: Deep Metric Learning for Signature Verification In our previous blog post, , we discussed how pretrained models can serve as strong baselines for the task of signature verification.
...read more
May 27, 2021 · post

Pre-trained Models as a Strong Baseline for Automatic Signature Verification

By Victor and Andrew. Figure 1. Baseline approach for automatic signature verification using pre-trained models TLDR; This post describes how pretrained image classification models can be used as strong baselines for the task of signature verification. Other posts in the series are listed below: Pretrained Models as Baselines for Signature Verification -- Part 1: Deep Learning for Automatic Offline Signature Verification: An Introduction Part 2: Pretrained Models as Baselines for Signature Verification Part 3: Deep Metric Learning for Signature Verification As discussed in our introductory blog post, offline signature verification is a biometric verification task that aims to discriminate between genuine and forged samples of handwritten signatures.
...read more
May 26, 2021 · post

Deep Learning for Automatic Offline Signature Verification: An Introduction

By Victor and Andrew. Figure 1. A summary of tasks that comprise the automatic signature verification pipeline (and related machine learning problems). TLDR; This post provides an overview of the signature verification task, use cases, and challenges. A complete list of the posts in this series is outlined below: Pretrained Models as Baselines for Signature Verification -- Part 1: Deep Learning for Automatic Offline Signature Verification: An Introduction Part 2: Pretrained Models as Baselines for Signature Verification Part 3: Deep Metric Learning for Signature Verification Given two signatures, automatic signature verification (ASV) seeks to determine if they are produced by the same user (genuine signatures) or different users (potential forgeries).
...read more
Nov 15, 2020 · post

Representation Learning 101 for Software Engineers

by Victor Dibia · Figure 1: Overview of representation learning methods. TLDR; Good representations of data (e.g., text, images) are critical for solving many tasks (e.g., search or recommendations). Deep representation learning yields state of the art results when used to create these representations. In this article, we review methods for representation learning and walk through an example using pretrained models. Introduction Deep Neural Networks (DNNs) have become a particularly useful tool in building intelligent systems that simplify cognitive tasks for users.
...read more
Jun 22, 2020 · post

How to Explain HuggingFace BERT for Question Answering NLP Models with TF 2.0

by Victor · Given a question and a passage, the task of Question Answering (QA) focuses on identifying the exact span within the passage that answers the question. Figure 1: In this sample, a BERTbase model gets the answer correct (Achaemenid Persia). Model gradients show that the token “subordinate ..” is impactful in the selection of an answer to the question “Macedonia was under the rule of which country?". This makes sense .. good for BERTbase.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com
Notebook

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.
https://colab.research.google.com/drive/1pjPzsw_uZew-Zcz646JTkRDhF2GkPk0N

About

Cloudera Fast Forward is an applied machine learning reseach group.
Cloudera   Blog   Twitter