Jan 18, 2017 · post

New Research on Probabilistic Programming


We’re excited to release the latest research from our machine intelligence R&D team! 

This report and prototype explore probabilistic programming, an emerging programming paradigm that makes it easier to construct and fit Bayesian inference models in code. It’s advanced statistics, simplified for data scientists looking to build models fast.

Bayesian inference has been popular in scientific research for a long time. The statistical technique allows us to encode expert knowledge into a model by stating prior beliefs about what we think our data looks like. These prior beliefs are then updated in light of new data, providing not one prediction, but a full distribution of likely answers with baked-in confidence rates. This allows us to asses the risk of our decisions with more nuance.

Bayesian methods lack widespread commercial use because they’re tough to implement. But probabilistic programming reduces what used to take months of thorny statistical sampling into an afternoon of work.

This will further expand the utility of machine learning. Bayesian models aren’t black boxes, a criterion for regulated industries like healthcare. Unlike deep learning networks, they don’t require large, clean data sets or large amounts of GPU processing power to deliver results. And they bridge human knowledge with data, which may lead to breakthroughs in areas as diverse as anomaly detection and music analysis

Our work on probabilistic programming includes two prototypes and a report that teaches you:

  • How Bayesian inference works and where it’s useful
  • Why probabilistic programming is becoming possible now
  • When to use probabilistic programming and what the code looks like
  • What tools and languages exist today and how they compare
  • Which vendors offer probabilistic programming products

Finally, as in all our research, we predict where this technology is going, and applications for which it will be useful in the next couple of years.

Probabilistic Real Estate Prototype

One powerful feature of probabilistic programming is the ability to build hierarchical models, which allow us to group observations together and learn from their similarities. This is practical in contexts like user segmentation: individual users often shares tastes with other users of the same sex, age group, or location, and hierarchical models provide more accurate predictions about individuals by leveraging learnings from the group.


We explored using probabilistic programming for hierarchical models in our Probabilistic Real Estate prototype. This prototype predicts future real estate prices across the New York City boroughs. It enables you to input your budget (say $1.6 million) and shows you the probability of finding properties in that price range across different neighborhoods and future time periods.

Hierarchical models helped make predictions in neighborhoods with sparse pricing data. In our model, we declared that apartments are in neighborhoods and neighborhoods are in boroughs; on average, apartments in one neighborhood are more similar to others in the same location than elsewhere. By modeling this way, we could learn about the West Village not only from the West Village, but also from the East Village and Brooklyn. That means, with little data about the West Village, we could use data from the East Village to fill in the gaps! 

Many companies suffer from imperfect, incomplete data. These types of inferences can be invaluable to improve predictions based on real-world dependencies.

Play around with the prototype! You’ll see how the color gradients give you an intuitive sense for what probability distributions look like in practice.

Read more

Jan 25, 2017 · interview
Jan 11, 2017 · interview

Latest posts

Sep 22, 2021 · post

Automatic Summarization from TextRank to Transformers

by Melanie Beck · Automatic summarization is a task in which a machine distills a large amount of data into a subset (the summary) that retains the most relevant and important information from the whole. While traditionally applied to text, automatic summarization can include other formats such as images or audio. In this article we’ll cover the main approaches to automatic text summarization, talk about what makes for a good summary, and introduce Summarize. – a summarization prototype we built that showcases several automatic summarization techniques. more
Sep 21, 2021 · post

Extractive Summarization with Sentence-BERT

by Victor Dibia · In extractive summarization, the task is to identify a subset of text (e.g., sentences) from a document that can then be assembled into a summary. Overall, we can treat extractive summarization as a recommendation problem. That is, given a query, recommend a set of sentences that are relevant. The query here is the document, relevance is a measure of whether a given sentence belongs in the document summary. How we go about obtaining this measure of relevance varies (a common dilemma for any recommendation system). more
Sep 20, 2021 · post

How (and when) to enable early stopping for Gensim's Word2Vec

by Melanie Beck · The Gensim library is a staple of the NLP stack. While it primarily focuses on topic modeling and similarity for documents, it also supports several word embedding algorithms, including what is likely the best-known implementation of Word2Vec. Word embedding models like Word2Vec use unlabeled data to learn vector representations for each token in a corpus. These embeddings can then be used as features in myriad downstream tasks such as classification, clustering, or recommendation systems. more
Jul 7, 2021 · post

Exploring Multi-Objective Hyperparameter Optimization

By Chris and Melanie. The machine learning life cycle is more than data + model = API. We know there is a wealth of subtlety and finesse involved in data cleaning and feature engineering. In the same vein, there is more to model-building than feeding data in and reading off a prediction. ML model building requires thoughtfulness both in terms of which metric to optimize for a given problem, and how best to optimize your model for that metric! more
Jun 9, 2021 ·

Deep Metric Learning for Signature Verification

By Victor and Andrew. TLDR; This post provides an overview of metric learning loss functions (constrastive, triplet, quadruplet, and group loss), and results from applying contrastive and triplet loss to the task of signature verification. A complete list of the posts in this series is outlined below: Pretrained Models as Baselines for Signature Verification -- Part 1: Deep Learning for Automatic Offline Signature Verification: An Introduction Part 2: Pretrained Models as Baselines for Signature Verification Part 3: Deep Metric Learning for Signature Verification In our previous blog post, we discussed how pretrained models can serve as strong baselines for the task of signature verification. more
May 27, 2021 · post

Pretrained Models as a Strong Baseline for Automatic Signature Verification

By Victor and Andrew. Figure 1. Baseline approach for automatic signature verification using pretrained models TLDR; This post describes how pretrained image classification models can be used as strong baselines for the task of signature verification. The full list of posts in the series is outlined below: Pretrained Models as Baselines for Signature Verification -- Part 1: Deep Learning for Automatic Offline Signature Verification: An Introduction Part 2: Pretrained Models as Baselines for Signature Verification Part 3: Deep Metric Learning for Signature Verification As discussed in our introductory blog post, offline signature verification is a biometric verification task that aims to discriminate between genuine and forged samples of handwritten signatures. more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)


In-depth guides to specific machine learning capabilities


Machine learning prototypes and interactive notebooks


A usable library for question answering on large datasets.

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.


Cloudera Fast Forward is an applied machine learning reseach group.
Cloudera   Blog   Twitter