Blog

Jan 18, 2017 · post

New Research on Probabilistic Programming

image

We’re excited to release the latest research from our machine intelligence R&D team! 

This report and prototype explore probabilistic programming, an emerging programming paradigm that makes it easier to construct and fit Bayesian inference models in code. It’s advanced statistics, simplified for data scientists looking to build models fast.

Bayesian inference has been popular in scientific research for a long time. The statistical technique allows us to encode expert knowledge into a model by stating prior beliefs about what we think our data looks like. These prior beliefs are then updated in light of new data, providing not one prediction, but a full distribution of likely answers with baked-in confidence rates. This allows us to asses the risk of our decisions with more nuance.

Bayesian methods lack widespread commercial use because they’re tough to implement. But probabilistic programming reduces what used to take months of thorny statistical sampling into an afternoon of work.

This will further expand the utility of machine learning. Bayesian models aren’t black boxes, a criterion for regulated industries like healthcare. Unlike deep learning networks, they don’t require large, clean data sets or large amounts of GPU processing power to deliver results. And they bridge human knowledge with data, which may lead to breakthroughs in areas as diverse as anomaly detection and music analysis

Our work on probabilistic programming includes two prototypes and a report that teaches you:

  • How Bayesian inference works and where it’s useful
  • Why probabilistic programming is becoming possible now
  • When to use probabilistic programming and what the code looks like
  • What tools and languages exist today and how they compare
  • Which vendors offer probabilistic programming products

Finally, as in all our research, we predict where this technology is going, and applications for which it will be useful in the next couple of years.

Probabilistic Real Estate Prototype

One powerful feature of probabilistic programming is the ability to build hierarchical models, which allow us to group observations together and learn from their similarities. This is practical in contexts like user segmentation: individual users often shares tastes with other users of the same sex, age group, or location, and hierarchical models provide more accurate predictions about individuals by leveraging learnings from the group.

image

We explored using probabilistic programming for hierarchical models in our Probabilistic Real Estate prototype. This prototype predicts future real estate prices across the New York City boroughs. It enables you to input your budget (say $1.6 million) and shows you the probability of finding properties in that price range across different neighborhoods and future time periods.

Hierarchical models helped make predictions in neighborhoods with sparse pricing data. In our model, we declared that apartments are in neighborhoods and neighborhoods are in boroughs; on average, apartments in one neighborhood are more similar to others in the same location than elsewhere. By modeling this way, we could learn about the West Village not only from the West Village, but also from the East Village and Brooklyn. That means, with little data about the West Village, we could use data from the East Village to fill in the gaps! 

Many companies suffer from imperfect, incomplete data. These types of inferences can be invaluable to improve predictions based on real-world dependencies.

Play around with the prototype! You’ll see how the color gradients give you an intuitive sense for what probability distributions look like in practice.

Read more

Newer
Jan 25, 2017 · interview
Older
Jan 11, 2017 · interview

Latest posts

Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Jul 29, 2022 · post

Ethical Considerations When Designing an NLG System

by Andrew Reed · Blog Series This post serves as Part 4 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System At last, we’ve made it to the final chapter of this blog series.
...read more
Jul 11, 2022 · post

Automated Metrics for Evaluating Text Style Transfer

by Andrew & Melanie · By Andrew Reed and Melanie Beck Blog Series This post serves as Part 3 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System In our previous blog post, we took an in-depth look at how to neutralize subjectivity bias in text using HuggingFace transformers.
...read more
May 5, 2022 · post

Neutralizing Subjectivity Bias with HuggingFace Transformers

by Andrew Reed · Blog Series This post serves as Part 2 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Subjective language is all around us – product advertisements, social marketing campaigns, personal opinion blogs, political propaganda, and news media, just to name a few examples.
...read more
Mar 22, 2022 · post

An Introduction to Text Style Transfer

by Andrew Reed · Blog Series This post serves as Part 1 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Today’s world of natural language processing (NLP) is driven by powerful transformer-based models that can automatically caption images, answer open-ended questions, engage in free dialog, and summarize long-form bodies of text – of course, with varying degrees of success.
...read more
Jan 31, 2022 · post

Why and How Convolutions Work for Video Classification

by Daniel Valdez-Balderas · Video classification is perhaps the simplest and most fundamental of the tasks in the field of video understanding. In this blog post, we’ll take a deep dive into why and how convolutions work for video classification. Our goal is to help the reader develop an intuition about the relationship between space (the image part of video) and time (the sequence part of video), and pave the way to a deep understanding of video classification algorithms.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com
Notebook

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.
https://colab.research.google.com/drive/1pjPzsw_uZew-Zcz646JTkRDhF2GkPk0N

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.