Nov 30, 2017 · newsletter

The promise of Automated Machine Learning (AutoML)

Earlier this month The New York Times published an article on Building A.I. That Can Build A.I.. There is a lot of excitement about AutoML due to the scarcity of machine learning (ML) talent:

By some estimates, only 10,000 people worldwide have the education, experience and talent needed to build the complex and sometimes mysterious mathematical algorithms that will drive this new breed of artificial intelligence.

Furthermore, ML/AI experts are expensive: Tech Giants Are Paying Huge Salaries for Scarce A.I. Talent. AutoML promises more ML at lower cost; it is an enticing offering.

The multiple meanings of AutoML

That said, the realistic promise of new capabilities is hard to grasp. There are at least three different notions of AutoML:

  • Citizen Data Science / ML: AutoML will allow everyone to do data science and ML. It requires no special training or skills.
  • Efficient Data Science / ML: AutoML will supercharge your data scientists and ML engineers by making them more efficient.
  • Learning to Learn: AutoML will automate architecture and optimization algorithm design (much like neural networks automated feature engineering).

We could add a fourth:

  • Transfer Learning: AutoML will allow algorithms to learn new tasks faster by utilizing what they have learned from mastering other tasks in the past.

Google Brain’s AutoML project is about Learning to Learn:

Typically, our machine learning models are painstakingly designed by a team of engineers and scientists. This process of manually designing machine learning models is difficult because the search space of all possible models can be combinatorially large — a typical 10-layer network can have ~1010 candidate networks! For this reason, the process of designing networks often takes a significant amount of time and experimentation by those with significant machine learning expertise.

Learning to learn is very exciting! But it requires extensive computational resources for model training, the kind Google has access to, but not many others. By providing access to (cloud) compute power, of course, AutoML as Learning to Learn is an excellent strategy to monetize Google’s cloud compute offering; Google has an excellent business case for investing time and resources into the AutoML project (of course). But experts suugest it will take a while before the promise of AutoML as Learning to Learn will materialize:

Renato Negrinho, a researcher at Carnegie Mellon University who is exploring technology similar to AutoML, said this was not a reality today but should be in the years to come. “It is just a matter of when,” he said.

We agree. So how about the promise of the other notions of AutoML?

There are data science and ML platform vendors that promise to automate data science and ML to the extent that Citizen Data Science / ML may soon became real (e..g, DataRobot). Data science and ML practitioners, however, are skeptical about the promise of Citizen Data Science (and, frankly, worried about some of its outputs and consequences).

We believe AutoML as Efficient Data Science / ML shows real promise for the largest number of companies within the near to midterm future. There is ample opportunity to improve the data science and ML work flow, and to automate parts of it, to make your data professionals more effective.

The promise of AutoML as Efficient Data Science

The typical ML system can be broken down into a number of different components, or modules, each with a different aim and focus.

The different components of ML systems. Only a small fraction of real-world ML systems are composed of the ML code. To put ML to work requires complex surrounding infrastructure (taken from the paper Hidden Technical Debt in Machine Learning Systems).

ML code, while important, is only a small fraction of the code base authored by data teams (and their colleagues) to put algorithms to work. And, even the best, highest accuracy models are useful only in production. In production, they need monitoring, and (eventually) retraining. Building and maintaining these often fragile ML pipelines is expensive, both in time and effort. In the process, teams often build up significant technical debt.

Uber and Google recently published papers describing their ML platforms. Their platforms inform us about the challenges they faced putting ML to work.

Google’s platform is built with an emphasis on systems capable of detecting failure and bugs so they do not propagate into the production environment. Uber’s emphasis is on making good use for institutional knowledge. Uber’s platform features a feature store, where Uber’s data scientists store and share (engineered) features (and, presumably, trained models) alongside the appropriate meta-data to help with discoverability (preparing the ground for Transfer Learning). Both provide a framework for reliably producing and deploying machine learning models at scale and promise AutoML as Efficient Data Science / ML (and, eventually, Transfer Learning).

At Cloudera (please excuse the plug), the Cloudera Data Science Workbench provides a solution available to all, not just Google’s or Uber’s data scientists.

Read more

Dec 20, 2017 · post
Nov 22, 2017 · post

Latest posts

May 5, 2022 · post

Neutralizing Subjectivity Bias with HuggingFace Transformers

by Andrew Reed · Subjective language is all around us – product advertisements, social marketing campaigns, personal opinion blogs, political propaganda, and news media, just to name a few examples. From a young age, we are taught the power of rhetoric as a means to influence others with our ideas and enact change in the world. As a result, this has become society’s default tone for broadcasting ideas. And while the ultimate morality of our rhetoric depends on the underlying intent (benevolent vs. more
Mar 22, 2022 · post

An Introduction to Text Style Transfer

by Andrew Reed · Today’s world of natural language processing (NLP) is driven by powerful transformer-based models that can automatically caption images, answer open-ended questions, engage in free dialog, and summarize long-form bodies of text – of course, with varying degrees of success. Success here is typically measured by the accuracy (Did the model produce a correct response?) and fluency (Is the output coherent in the native language?) of the generated text. While these two measures of success are of top priority, they neglect a fundamental aspect of language – style. more
Jan 31, 2022 · post

Why and How Convolutions Work for Video Classification

by Daniel Valdez-Balderas · Video classification is perhaps the simplest and most fundamental of the tasks in the field of video understanding. In this blog post, we’ll take a deep dive into why and how convolutions work for video classification. Our goal is to help the reader develop an intuition about the relationship between space (the image part of video) and time (the sequence part of video), and pave the way to a deep understanding of video classification algorithms. more
Dec 14, 2021 · post

An Introduction to Video Understanding: Capabilities and Applications

by Daniel Valdez Balderas · Video footage constitutes a significant portion of all data in the world. The 30 thousand hours of video uploaded to Youtube every hour is a part of that data; another portion is produced by 770 million surveillance cameras globally. In addition to being plentiful, video data has tremendous capacity to store useful information. Its vastness, richness, and applicability make the understanding of video a key activity within the field of computer vision. more
Sep 22, 2021 · post

Automatic Summarization from TextRank to Transformers

by Melanie Beck · Automatic summarization is a task in which a machine distills a large amount of data into a subset (the summary) that retains the most relevant and important information from the whole. While traditionally applied to text, automatic summarization can include other formats such as images or audio. In this article we’ll cover the main approaches to automatic text summarization, talk about what makes for a good summary, and introduce Summarize. – a summarization prototype we built that showcases several automatic summarization techniques. more
Sep 21, 2021 · post

Extractive Summarization with Sentence-BERT

by Victor Dibia · In extractive summarization, the task is to identify a subset of text (e.g., sentences) from a document that can then be assembled into a summary. Overall, we can treat extractive summarization as a recommendation problem. That is, given a query, recommend a set of sentences that are relevant. The query here is the document, relevance is a measure of whether a given sentence belongs in the document summary. How we go about obtaining this measure of relevance varies (a common dilemma for any recommendation system). more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)


In-depth guides to specific machine learning capabilities


Machine learning prototypes and interactive notebooks


A usable library for question answering on large datasets.

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter