Blog

Nov 30, 2017 · newsletter

The promise of Automated Machine Learning (AutoML)

Earlier this month The New York Times published an article on Building A.I. That Can Build A.I.. There is a lot of excitement about AutoML due to the scarcity of machine learning (ML) talent:

By some estimates, only 10,000 people worldwide have the education, experience and talent needed to build the complex and sometimes mysterious mathematical algorithms that will drive this new breed of artificial intelligence.

Furthermore, ML/AI experts are expensive: Tech Giants Are Paying Huge Salaries for Scarce A.I. Talent. AutoML promises more ML at lower cost; it is an enticing offering.

The multiple meanings of AutoML

That said, the realistic promise of new capabilities is hard to grasp. There are at least three different notions of AutoML:

  • Citizen Data Science / ML: AutoML will allow everyone to do data science and ML. It requires no special training or skills.
  • Efficient Data Science / ML: AutoML will supercharge your data scientists and ML engineers by making them more efficient.
  • Learning to Learn: AutoML will automate architecture and optimization algorithm design (much like neural networks automated feature engineering).

We could add a fourth:

  • Transfer Learning: AutoML will allow algorithms to learn new tasks faster by utilizing what they have learned from mastering other tasks in the past.

Google Brain’s AutoML project is about Learning to Learn:

Typically, our machine learning models are painstakingly designed by a team of engineers and scientists. This process of manually designing machine learning models is difficult because the search space of all possible models can be combinatorially large — a typical 10-layer network can have ~1010 candidate networks! For this reason, the process of designing networks often takes a significant amount of time and experimentation by those with significant machine learning expertise.

Learning to learn is very exciting! But it requires extensive computational resources for model training, the kind Google has access to, but not many others. By providing access to (cloud) compute power, of course, AutoML as Learning to Learn is an excellent strategy to monetize Google’s cloud compute offering; Google has an excellent business case for investing time and resources into the AutoML project (of course). But experts suugest it will take a while before the promise of AutoML as Learning to Learn will materialize:

Renato Negrinho, a researcher at Carnegie Mellon University who is exploring technology similar to AutoML, said this was not a reality today but should be in the years to come. “It is just a matter of when,” he said.

We agree. So how about the promise of the other notions of AutoML?

There are data science and ML platform vendors that promise to automate data science and ML to the extent that Citizen Data Science / ML may soon became real (e..g, DataRobot). Data science and ML practitioners, however, are skeptical about the promise of Citizen Data Science (and, frankly, worried about some of its outputs and consequences).

We believe AutoML as Efficient Data Science / ML shows real promise for the largest number of companies within the near to midterm future. There is ample opportunity to improve the data science and ML work flow, and to automate parts of it, to make your data professionals more effective.

The promise of AutoML as Efficient Data Science

The typical ML system can be broken down into a number of different components, or modules, each with a different aim and focus.

The different components of ML systems. Only a small fraction of real-world ML systems are composed of the ML code. To put ML to work requires complex surrounding infrastructure (taken from the paper Hidden Technical Debt in Machine Learning Systems).

ML code, while important, is only a small fraction of the code base authored by data teams (and their colleagues) to put algorithms to work. And, even the best, highest accuracy models are useful only in production. In production, they need monitoring, and (eventually) retraining. Building and maintaining these often fragile ML pipelines is expensive, both in time and effort. In the process, teams often build up significant technical debt.

Uber and Google recently published papers describing their ML platforms. Their platforms inform us about the challenges they faced putting ML to work.

Google’s platform is built with an emphasis on systems capable of detecting failure and bugs so they do not propagate into the production environment. Uber’s emphasis is on making good use for institutional knowledge. Uber’s platform features a feature store, where Uber’s data scientists store and share (engineered) features (and, presumably, trained models) alongside the appropriate meta-data to help with discoverability (preparing the ground for Transfer Learning). Both provide a framework for reliably producing and deploying machine learning models at scale and promise AutoML as Efficient Data Science / ML (and, eventually, Transfer Learning).

At Cloudera (please excuse the plug), the Cloudera Data Science Workbench provides a solution available to all, not just Google’s or Uber’s data scientists.

Read more

Newer
Dec 20, 2017 · post
Older
Nov 22, 2017 · post

Latest posts

Jun 22, 2020 · post

How to Explain HuggingFace BERT for Question Answering NLP Models with TF 2.0

by Victor · Figure 1: In this sample, a BERTbase model gets the answer correct (Achaemenid Persia). Model gradients show that the token “subordinate ..” is impactful in the selection of an answer to the question “Macedonia was under the rule of which country?". This makes sense .. good for BERTbase. Recently, our team at Fast Forward Labs have been exploring state of the art models for Question Answering and have used the rather excellent HuggingFace transformers library.
...read more
Jun 16, 2020 · notebook

Evaluating QA: Metrics, Predictions, and the Null Response →

by Melanie · A deep dive into computing QA predictions and when to tell BERT to zip it! In our last post, Building a QA System with BERT on Wikipedia, we used the HuggingFace framework to train BERT on the SQuAD2.0 dataset and built a simple QA system on top of the Wikipedia search engine. This time, we’ll look at how to assess the quality of a BERT-like model for Question Answering.
qa.fastforwardlabs.com
May 19, 2020 · notebook

Building a QA System with BERT on Wikipedia →

by Melanie · So you’ve decided to build a QA system. You want to start with something simple and general so you plan to make it open domain using Wikipedia as a corpus for answering questions. You want to use the best NLP that your compute resources allow (you’re lucky enough to have access to a GPU) so you’re going to focus on the big, flashy Transformer models that are all the rage these days.
qa.fastforwardlabs.com
Apr 28, 2020 · notebook

Intro to Automated Question Answering →

by Melanie · Welcome to the first edition of the Cloudera Fast Forward blog on Natural Language Processing for Question Answering! Throughout this series, we’ll build a Question Answering (QA) system with off-the-shelf algorithms and libraries and blog about our process and what we find along the way. We hope to wind up with a beginning-to-end documentary that provides:
qa.fastforwardlabs.com
Apr 1, 2020 · newsletter

Enterprise Grade ML

by Shioulin · At Cloudera Fast Forward, one of the mechanisms we use to tightly couple machine learning research with application is through application development projects for both internal and external clients. The problems we tackle in these projects are wide ranging and cut across various industries; the end goal is a production system that translates data into business impact. What is Enterprise Grade Machine Learning? Enterprise grade ML, a term mentioned in a paper put forth by Microsoft, refers to ML applications where there is a high level of scrutiny for data handling, model fairness, user privacy, and debuggability.
...read more
Apr 1, 2020 · post

Bias in Knowledge Graphs - Part 1

by Keita · Introduction This is the first part of a series to review Bias in Knowledge Graphs (KG). We aim to describe methods of identifying bias, measuring its impact, and mitigating that impact. For this part, we’ll give a broad overview of this topic. image credit: Mediamodifier from Pixabay Motivation Knowledge graphs, graphs with built-in ontologies, create unique opportunities for data analytics, machine learning, and data mining. They do this by enhancing data with the power of connections and human knowledge.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com
Notebook

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.
https://colab.research.google.com/drive/1pjPzsw_uZew-Zcz646JTkRDhF2GkPk0N
Prototype

Refractor

Refractor predicts churn probabilities for telecom customers and shows which customer attributes contribute to those predictions.
https://refractor.fastforwardlabs.com

About

Cloudera Fast Forward is an applied machine learning reseach group.
Cloudera   Blog   Twitter