Blog

Dec 18, 2018 · newsletter

Fine-tuning for Natural Language Processing

2018 was a fun and exciting year for natural language processing. A series of papers put forth powerful new ideas that improve the way machines understand and work with language. They challenge the standard way of using pretrained word embeddings like word2vec to initialize the first layer of a neural net, while the rest is trained on data of a particular task. Instead, these papers propose better embeddings (feature-based approach) and pre-trained models that can be fine-tuned for a supervised downstream task (fine-tuning approach).

Under feature-based approaches, where fixed features, in the form of vectors, are extracted from the pre-trained model, ELMo provides contextualized embeddings for a word. For example, the word bank in “I want to deposit money into a bank” and “I want to run by the river bank” means different things. ELMo allows the word “bank” to have multiple embeddings depending on the context in which it is used. Under fine-tuning approaches, BERT, ULM-FiT and OpenAI GPT (pdf) propose various model architectures that are pre-trained on a language model objective (i.e., predict the next word). Among these models, BERT stands out because it provides representations that are jointly conditioned on both left and right context in all layers. In other words, it is deeply bidirectional, as opposed to ELMo (shallow bidirectional) and OpenAI GPT (one direction, left to right).

BERT is bidirectional in all layers and uses a bidirectional Transformer. OpenAI GPT uses a left-to-right Transformer. ELMo concatenates two independently trained left-to-right and right-to-left LSTMs. Image credit

BERT’s architecture is based on a bidirectional Transformer encoder. (We will not go into details of the Tranformer, but the paper is worth a read!) BERT’s input representation is able to represent a single text sentence or a pair of text sentences (the reason will become apparent later on). Each token, or loosely, each word is represented by the summation of its word embedding, a learned positional embedding, and a learned segment embedding. The word embedding used in the paper is WordPiece embeddings. The positional embedding captures the order of the word in the sequence (or sentence). The learned segment embedding associates certain tokens with a particular sentence since the input can be a pair of text sentences.

BERT is not trained using a traditional left-to-right or right-to-left language model. In these approaches, the model is asked to predict the next word, given what it has seen so far either from the left or right. ELMo, for example, trains two models, one left-to-right, the other right-to-left, and concatenates them together. This results in a shallow bidirectional model. It is impossible to train a deep bidirectional model like a normal language model because that would create cycles where words can indirectly “see themselves.” The prediction then becomes trivial. To overcome this, BERT trains using two clever unsupervised prediction tasks. First, it masks a percentage of words from the input and asks the model to predict these masked words from the context. An example would be to ask the model to predict [MASK1] = hairy from the input “my dog is [MASK1]". The second task teaches BERT to understand the relationship between two text sentences by pre-training a binarized next sentence prediction task (see image). This ability is not captured by language modeling, but is important for many important downstream tasks (e.g. Question Answering).

Next sentence prediction task Image credit

Once BERT is pretrained, task-specific models are formed by adding one additional output layer, so a minimal number of parameters need to be learned from scratch. As an example, a classifier composed of a simple feed forward neural network and a softmax layer can be added to BERT for spam detectionn. This is akin to transfer learning for image recognition. Many of us at CFFL are excited about this capability, and some of our thoughts are captured in this previous newsletter article. BERT can also be used as a feature extractor. By concatenating various hidden layers of the pretrained Transformer, the authors show that the best performing combination is only 0.3 F1 behind fine-tuning the entire model for named entity recognition task. BERT is open sourced, and we cannot wait to see it being used to solve problems outside of the research space!

Read more

Newer
Dec 18, 2018 · post
Older
Dec 18, 2018 · newsletter

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.