Blog

Mar 20, 2019 · featured post

Learning with Limited Labeled Data

In recent years, machine learning technologies - especially deep learning - have made breakthroughs which have turned science fiction into reality. Autonomous cars are almost possible, and machines can comprehend language. These technical advances are unprecedented, but they hinge on the availability of vast amounts of data.

For a form of machine learning known as supervised learning, having data itself is not sufficient. Supervised machine learning, while powerful, needs data in a form that can serve as examples for what machines should learn. These examples often manifest themselves in the form of labeled data. The labels are used to teach and guide machines.

Unfortunately, data in the real world does not come nicely packaged with labels. Enterprises collect massive amounts of data - but only a small sliver (if any) of that data is labeled. For example, risk assessment is crucial for financial institutions, because it sets the amount of capital required to absorb systemic instability. Large volumes of contracts and loan agreements exist and can be used to build a risk model, but not all of them have been processed to extract relevant information, such as the purpose of the agreement, the loan amount, and the collateral amount. In corporate IT, customer service chat logs are available and can be used to identify customer concerns and satisfaction levels, but not many are annotated. In healthcare, medical images are abundant and can be used to build a diagnostic model, but these images are rarely labeled properly.

In order to leverage supervised machine learning opportunities, many enterprises attempt to manually label vast amounts of unlabeled data. This undertaking can be prohibitively expensive, inefficient, and time-consuming.

Learning with limited labeled data, then, is a machine learning capability that enables enterprises to leverage their pool of unlabeled data to open up new product possibilities. While there are many approaches, most of them attempt to capture the available labeled data using a representation that can be further adjusted if and when new labels are obtained.

Active learning is one such approach. It takes advantage of collaboration between humans and machines to smartly pick a small subset of data to be labeled. A machine learning model is then built using this small subset of data.

The latest report and prototype from Cloudera Fast Forward Labs explores active learning and its implications. While not a new framework, active learning has recently been adapted to deep learning applications, where the labeled data requirement is even more stringent. Along with the availability of tooling and a maturing supporting ecosystem, active learning is now newly exciting!

The report will be available to corporate subscribers to Cloudera Fast Forward Labs’ research and advising service on April 2nd. The prototype will be made available to the public the same day.

Please join us on Wednesday, April 3rd at 10:00am PST (1:00pm EST) for a live webinar on “Learning with Limited Labeled Data.” Shioulin Sam and Nisha Muktewar of Cloudera Fast Forward Labs will be joined by Sanjay Krishnan (Assistant Professor in Computer Science, University of Chicago) and Ines Montani (Founder of Explosion.ai).

Click here to watch the webinar!

Read more

Newer
Mar 29, 2019 · newsletter
Older
Feb 28, 2019 · newsletter

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.