Blog

Mar 20, 2019 · featured post

Learning with Limited Labeled Data

In recent years, machine learning technologies - especially deep learning - have made breakthroughs which have turned science fiction into reality. Autonomous cars are almost possible, and machines can comprehend language. These technical advances are unprecedented, but they hinge on the availability of vast amounts of data.

For a form of machine learning known as supervised learning, having data itself is not sufficient. Supervised machine learning, while powerful, needs data in a form that can serve as examples for what machines should learn. These examples often manifest themselves in the form of labeled data. The labels are used to teach and guide machines.

Unfortunately, data in the real world does not come nicely packaged with labels. Enterprises collect massive amounts of data - but only a small sliver (if any) of that data is labeled. For example, risk assessment is crucial for financial institutions, because it sets the amount of capital required to absorb systemic instability. Large volumes of contracts and loan agreements exist and can be used to build a risk model, but not all of them have been processed to extract relevant information, such as the purpose of the agreement, the loan amount, and the collateral amount. In corporate IT, customer service chat logs are available and can be used to identify customer concerns and satisfaction levels, but not many are annotated. In healthcare, medical images are abundant and can be used to build a diagnostic model, but these images are rarely labeled properly.

In order to leverage supervised machine learning opportunities, many enterprises attempt to manually label vast amounts of unlabeled data. This undertaking can be prohibitively expensive, inefficient, and time-consuming.

Learning with limited labeled data, then, is a machine learning capability that enables enterprises to leverage their pool of unlabeled data to open up new product possibilities. While there are many approaches, most of them attempt to capture the available labeled data using a representation that can be further adjusted if and when new labels are obtained.

Active learning is one such approach. It takes advantage of collaboration between humans and machines to smartly pick a small subset of data to be labeled. A machine learning model is then built using this small subset of data.

The latest report and prototype from Cloudera Fast Forward Labs explores active learning and its implications. While not a new framework, active learning has recently been adapted to deep learning applications, where the labeled data requirement is even more stringent. Along with the availability of tooling and a maturing supporting ecosystem, active learning is now newly exciting!

The report will be available to corporate subscribers to Cloudera Fast Forward Labs’ research and advising service on April 2nd. The prototype will be made available to the public the same day.

Please join us on Wednesday, April 3rd at 10:00am PST (1:00pm EST) for a live webinar on “Learning with Limited Labeled Data.” Shioulin Sam and Nisha Muktewar of Cloudera Fast Forward Labs will be joined by Sanjay Krishnan (Assistant Professor in Computer Science, University of Chicago) and Ines Montani (Founder of Explosion.ai).

Click here to watch the webinar!

Read more

Newer
Mar 29, 2019 · newsletter
Older
Feb 28, 2019 · newsletter

Latest posts

Jul 29, 2022 · post

Ethical Considerations When Designing an NLG System

by Andrew Reed · Blog Series This post serves as Part 4 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System At last, we’ve made it to the final chapter of this blog series.
...read more
Jul 11, 2022 · post

Automated Metrics for Evaluating Text Style Transfer

by Andrew & Melanie · By Andrew Reed and Melanie Beck Blog Series This post serves as Part 3 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System In our previous blog post, we took an in-depth look at how to neutralize subjectivity bias in text using HuggingFace transformers.
...read more
May 5, 2022 · post

Neutralizing Subjectivity Bias with HuggingFace Transformers

by Andrew Reed · Blog Series This post serves as Part 2 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Subjective language is all around us – product advertisements, social marketing campaigns, personal opinion blogs, political propaganda, and news media, just to name a few examples.
...read more
Mar 22, 2022 · post

An Introduction to Text Style Transfer

by Andrew Reed · Blog Series This post serves as Part 1 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Today’s world of natural language processing (NLP) is driven by powerful transformer-based models that can automatically caption images, answer open-ended questions, engage in free dialog, and summarize long-form bodies of text – of course, with varying degrees of success.
...read more
Jan 31, 2022 · post

Why and How Convolutions Work for Video Classification

by Daniel Valdez-Balderas · Video classification is perhaps the simplest and most fundamental of the tasks in the field of video understanding. In this blog post, we’ll take a deep dive into why and how convolutions work for video classification. Our goal is to help the reader develop an intuition about the relationship between space (the image part of video) and time (the sequence part of video), and pave the way to a deep understanding of video classification algorithms.
...read more
Dec 14, 2021 · post

An Introduction to Video Understanding: Capabilities and Applications

by Daniel Valdez Balderas · Video footage constitutes a significant portion of all data in the world. The 30 thousand hours of video uploaded to Youtube every hour is a part of that data; another portion is produced by 770 million surveillance cameras globally. In addition to being plentiful, video data has tremendous capacity to store useful information. Its vastness, richness, and applicability make the understanding of video a key activity within the field of computer vision.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com
Notebook

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.
https://colab.research.google.com/drive/1pjPzsw_uZew-Zcz646JTkRDhF2GkPk0N

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter