Blog

Apr 3, 2019 · post

An Invitation to Active Learning

Many interesting learning problems exist in places where labeled data is limited. As such, much thought has been spent on how best to learn from limited labeled data. One obvious answer is simply to collect more data. That is valid, but for some applications, data is difficult or expensive to collect. If we will collect more data, we ought at least be smart about the data we collect. This motivates active learning, which provides strategies for learning in this scenario.

The ideal setting for active learning is that in which we have a small amount of labeled data with which to build a model and access to a large pool of unlabeled data. We must also have the means to label some of that data, but it’s OK for the labeling process to be costly (for instance, a human hand-labeling an image). The active learning process forms a loop:

  1. build a model based on the labeled data available
  2. use the model to predict labels for the unlabeled points
  3. use an active learning strategy to decide which point to label next
  4. label that point
  5. GOTO 1.

The active learning loop in action The active learning loop in action - try out the demo!

The essence of active learning is in the strategy we choose in the loop above. Three broad families of strategy are:

  • Random sampling. In the default case, we sample unlabeled data from the pool randomly. This is a passive approach where we don’t use the output of the current model to inform the next data point to be labeled. As such, it isn’t really active learning.

  • Uncertainty sampling. In uncertainty sampling, we choose the data point about which the algorithm is least certain to label next. This could be the point closest to the decision boundary (the least confident prediction), or it could be the point with highest entropy, or other measure of uncertainty. Choosing points as such helps our learning algorithm refine the decision boundary.

  • Density sampling. Uncertainty sampling works much better than random sampling, but by definition it causes the data points we choose to label to cluster around the decision boundary. This data may be very informative, but not necessarily representative. In density sampling, we try to sample from regions where there are many data points. The trade off between informativeness and representativeness is fundamental to active learning, and there are many approaches that address it.

To illustrate the difference between passive and active learning, we created an Observable notebook with a toy problem, which you can explore here. In the notebook, the goal is to find a good separation of red and blue points on a two dimensional chart, and we train a logistic regression model live in the browser to do so. One can see how the decision boundary separating the points evolves as more data is labeled with a random sampling strategy, and also with an uncertainty sampling strategy. In the case of two classes with a linear decision boundary, all the uncertainty sampling strategies (least confidence and highest entropy) give the same result. This is an extremely simplified example, but we think it shows some of the intuition behind active learning.

We explore active learning in much more detail in our report Learning with Limited Labeled Data, and you can get a high level overview in our previous post.

Read more

Newer
Apr 29, 2019 · newsletter
Older
Apr 2, 2019 · featured post

Latest posts

Jul 29, 2022 · post

Ethical Considerations When Designing an NLG System

by Andrew Reed · Blog Series This post serves as Part 4 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System At last, we’ve made it to the final chapter of this blog series.
...read more
Jul 11, 2022 · post

Automated Metrics for Evaluating Text Style Transfer

by Andrew & Melanie · By Andrew Reed and Melanie Beck Blog Series This post serves as Part 3 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System In our previous blog post, we took an in-depth look at how to neutralize subjectivity bias in text using HuggingFace transformers.
...read more
May 5, 2022 · post

Neutralizing Subjectivity Bias with HuggingFace Transformers

by Andrew Reed · Blog Series This post serves as Part 2 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Subjective language is all around us – product advertisements, social marketing campaigns, personal opinion blogs, political propaganda, and news media, just to name a few examples.
...read more
Mar 22, 2022 · post

An Introduction to Text Style Transfer

by Andrew Reed · Blog Series This post serves as Part 1 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Today’s world of natural language processing (NLP) is driven by powerful transformer-based models that can automatically caption images, answer open-ended questions, engage in free dialog, and summarize long-form bodies of text – of course, with varying degrees of success.
...read more
Jan 31, 2022 · post

Why and How Convolutions Work for Video Classification

by Daniel Valdez-Balderas · Video classification is perhaps the simplest and most fundamental of the tasks in the field of video understanding. In this blog post, we’ll take a deep dive into why and how convolutions work for video classification. Our goal is to help the reader develop an intuition about the relationship between space (the image part of video) and time (the sequence part of video), and pave the way to a deep understanding of video classification algorithms.
...read more
Dec 14, 2021 · post

An Introduction to Video Understanding: Capabilities and Applications

by Daniel Valdez Balderas · Video footage constitutes a significant portion of all data in the world. The 30 thousand hours of video uploaded to Youtube every hour is a part of that data; another portion is produced by 770 million surveillance cameras globally. In addition to being plentiful, video data has tremendous capacity to store useful information. Its vastness, richness, and applicability make the understanding of video a key activity within the field of computer vision.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com
Notebook

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.
https://colab.research.google.com/drive/1pjPzsw_uZew-Zcz646JTkRDhF2GkPk0N

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter