Apr 3, 2019 · post

An Invitation to Active Learning

Many interesting learning problems exist in places where labeled data is limited. As such, much thought has been spent on how best to learn from limited labeled data. One obvious answer is simply to collect more data. That is valid, but for some applications, data is difficult or expensive to collect. If we will collect more data, we ought at least be smart about the data we collect. This motivates active learning, which provides strategies for learning in this scenario.

The ideal setting for active learning is that in which we have a small amount of labeled data with which to build a model and access to a large pool of unlabeled data. We must also have the means to label some of that data, but it’s OK for the labeling process to be costly (for instance, a human hand-labeling an image). The active learning process forms a loop:

  1. build a model based on the labeled data available
  2. use the model to predict labels for the unlabeled points
  3. use an active learning strategy to decide which point to label next
  4. label that point
  5. GOTO 1.

The active learning loop in action The active learning loop in action - try out the demo!

The essence of active learning is in the strategy we choose in the loop above. Three broad families of strategy are:

  • Random sampling. In the default case, we sample unlabeled data from the pool randomly. This is a passive approach where we don’t use the output of the current model to inform the next data point to be labeled. As such, it isn’t really active learning.

  • Uncertainty sampling. In uncertainty sampling, we choose the data point about which the algorithm is least certain to label next. This could be the point closest to the decision boundary (the least confident prediction), or it could be the point with highest entropy, or other measure of uncertainty. Choosing points as such helps our learning algorithm refine the decision boundary.

  • Density sampling. Uncertainty sampling works much better than random sampling, but by definition it causes the data points we choose to label to cluster around the decision boundary. This data may be very informative, but not necessarily representative. In density sampling, we try to sample from regions where there are many data points. The trade off between informativeness and representativeness is fundamental to active learning, and there are many approaches that address it.

To illustrate the difference between passive and active learning, we created an Observable notebook with a toy problem, which you can explore here. In the notebook, the goal is to find a good separation of red and blue points on a two dimensional chart, and we train a logistic regression model live in the browser to do so. One can see how the decision boundary separating the points evolves as more data is labeled with a random sampling strategy, and also with an uncertainty sampling strategy. In the case of two classes with a linear decision boundary, all the uncertainty sampling strategies (least confidence and highest entropy) give the same result. This is an extremely simplified example, but we think it shows some of the intuition behind active learning.

We explore active learning in much more detail in our report Learning with Limited Labeled Data, and you can get a high level overview in our previous post.

Read more

Apr 29, 2019 · newsletter
Apr 2, 2019 · featured post

Latest posts

Sep 22, 2021 · post

Automatic Summarization from TextRank to Transformers

by Melanie Beck · Automatic summarization is a task in which a machine distills a large amount of data into a subset (the summary) that retains the most relevant and important information from the whole. While traditionally applied to text, automatic summarization can include other formats such as images or audio. In this article we’ll cover the main approaches to automatic text summarization, talk about what makes for a good summary, and introduce Summarize. – a summarization prototype we built that showcases several automatic summarization techniques. more
Sep 21, 2021 · post

Extractive Summarization with Sentence-BERT

by Victor Dibia · In extractive summarization, the task is to identify a subset of text (e.g., sentences) from a document that can then be assembled into a summary. Overall, we can treat extractive summarization as a recommendation problem. That is, given a query, recommend a set of sentences that are relevant. The query here is the document, relevance is a measure of whether a given sentence belongs in the document summary. How we go about obtaining this measure of relevance varies (a common dilemma for any recommendation system). more
Sep 20, 2021 · post

How (and when) to enable early stopping for Gensim's Word2Vec

by Melanie Beck · The Gensim library is a staple of the NLP stack. While it primarily focuses on topic modeling and similarity for documents, it also supports several word embedding algorithms, including what is likely the best-known implementation of Word2Vec. Word embedding models like Word2Vec use unlabeled data to learn vector representations for each token in a corpus. These embeddings can then be used as features in myriad downstream tasks such as classification, clustering, or recommendation systems. more
Jul 7, 2021 · post

Exploring Multi-Objective Hyperparameter Optimization

By Chris and Melanie. The machine learning life cycle is more than data + model = API. We know there is a wealth of subtlety and finesse involved in data cleaning and feature engineering. In the same vein, there is more to model-building than feeding data in and reading off a prediction. ML model building requires thoughtfulness both in terms of which metric to optimize for a given problem, and how best to optimize your model for that metric! more
Jun 9, 2021 ·

Deep Metric Learning for Signature Verification

By Victor and Andrew. TLDR; This post provides an overview of metric learning loss functions (constrastive, triplet, quadruplet, and group loss), and results from applying contrastive and triplet loss to the task of signature verification. A complete list of the posts in this series is outlined below: Pretrained Models as Baselines for Signature Verification -- Part 1: Deep Learning for Automatic Offline Signature Verification: An Introduction Part 2: Pretrained Models as Baselines for Signature Verification Part 3: Deep Metric Learning for Signature Verification In our previous blog post, we discussed how pretrained models can serve as strong baselines for the task of signature verification. more
May 27, 2021 · post

Pretrained Models as a Strong Baseline for Automatic Signature Verification

By Victor and Andrew. Figure 1. Baseline approach for automatic signature verification using pretrained models TLDR; This post describes how pretrained image classification models can be used as strong baselines for the task of signature verification. The full list of posts in the series is outlined below: Pretrained Models as Baselines for Signature Verification -- Part 1: Deep Learning for Automatic Offline Signature Verification: An Introduction Part 2: Pretrained Models as Baselines for Signature Verification Part 3: Deep Metric Learning for Signature Verification As discussed in our introductory blog post, offline signature verification is a biometric verification task that aims to discriminate between genuine and forged samples of handwritten signatures. more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)


In-depth guides to specific machine learning capabilities


Machine learning prototypes and interactive notebooks


A usable library for question answering on large datasets.

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.


Cloudera Fast Forward is an applied machine learning reseach group.
Cloudera   Blog   Twitter