Blog

Jun 26, 2019 · newsletter

Seeing is not necessarily believing

Advancements in machine learning have evolved to such an extent that machines can not only understand the input data but have also learned to create it. Generative models are one of the most promising approaches towards this goal. To train such a model we first collect a large amount of data (be it images, text, etc.) and then train a model to generate data like it.

Generative Adversarial Networks (GANs) are one such class of generative models, that, given a training dataset, learn to generate new data with the same statistics as the training set. For instance, a GAN trained on images of dogs can help generate new images of dogs that at times may look authentic and have many realistic characteristics. GANs have progressed substantially in the last couple of years and have been applauded for their ability to generate high fidelity and diverse images. As such, applications of adversarial training have found their way into image translation, style transfer, and more - particularly data augmentation.

So far these models have had limited success in such tasks for large-scale datasets like ImageNet, and that’s mainly because the models don’t generate sufficiently high quality samples. A recent model - BigGAN, however, has generated photorealistic images of ImageNet data and has achieved considerable performance improvement when evaluating using traditional metrics like Inception Score (IS) and Fréchet Inception Distance (FID) compared to the previous state-of-the-art. What this means is that BigGANs are capable of capturing data distributions. And if this were true, one could then possibly use these generated samples for many downstream tasks, especially in situations where limited labeled data is available.

Image source: Large scale GAN training for high fidelity natural image synthesis - Brock et al., 2018

A recent work tested whether BigGANs can be really useful for data augmentation, or - more drastically - for data replacement of the original data distribution. The hypothesis the authors wanted to test was that if BigGANs were indeed capturing the data distribution, one could use the generated samples instead of (or in addition to) the original training set, to improve performance on classification. The authors conducted two simple experiments. First, they trained ImageNet classifiers, replacing the original training set with one produced by BigGAN. Second, they augmented the original ImageNet training set with samples from BigGAN.

Replacing the original training data with BigGAN samples saw a substantial increase (120% and 384%) in the Top-1 and Top-5 classification errors when compared to the model performance on the original training set. Further, augmenting the training set improved the model performance only marginally, while at the expense of more training time. This suggests that naively augmenting the dataset with BigGAN samples is of limited utility and more work is required for BigGANs to be actually used in downstream tasks. It also further highlights the need to reflect on better metrics that could be used to evaluate image synthesis models like GANs. The current gold standard metrics - Inception Score (IS) and Fréchet Inception Distance (FID) for GAN model comparison could be misleading and are not predictive of data augmentation classification performance.

Read more

Newer
Jun 26, 2019 · newsletter
Older
May 29, 2019 · newsletter

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.