Sep 22, 2015 · interview
Fast Forward Labs Interviews Clarifai about Deep Learning
Last Thursday Hilary and I headed to Clarifai’s offices in the Flatiron District to ask CEO Matt Zeiler about using deep learning for image analysis. A few highlights from the interview:
1) The success of a deep learning project depends on the quality of the initial training data set. Deep learning algorithms start by scanning massive data sets to identify features (inputs) that can be correlated with categories (outputs) to make sense of the data. The neural nets behind deep learning are powerful because the individual nodes adjust over time, but they aren’t powerful enough to override the quality of the training data.
2) When analyzing images, deep learning algorithms can pick up not only features correlated with names of things (“this sharp pointed beak maps well to our category bird!”) but also with more abstract concepts like togetherness or romance. Clarifai’s API does not classify all image with two people next to one another as demonstrating “togetherness,” but only those images where people are touching, embracing, and indexing other features of connection.
3) The best way to understand a neural network is to build one on your own, perhaps using an open source resource. As deep learning research is currently a very active academic field, there are lots of options including Theano, Keras, caffe and Torch.
Check out the interview recording and feel free to reach out with questions about whether deep learning is right for you!
-Kathryn