Blog

Mar 25, 2016 · post

H.P. Luhn and the Heuristic Value of Simplicity

image

The Fast Forward Labs team is putting final touches on our Summarization research, which explains approaches to making text quantifiable and computable. Stay tuned for a series of resources on the topic, including an online talk May 24 where we’ll cover technical details and survey use cases for financial services, media, and professional services with Agolo. Sign up here!

In writing our reports, we try not only to inform readers about the libraries, math, and techniques they can use to put a system into production today, but also the lessons they can learn from historical approaches to a given topic. Turning a retrospective eye towards past work can be particularly helpful when using an algorithm like a recurrent neural network. That’s because neural networks are notoriously hard to interpret: feature engineering is left to the algorithm, and involves a complex interplay between the weight of individual computing nodes and the connections that link them together. In the face of this complexity, it can be helpful to keep former, more simple techniques in mind as a heuristic guide - or model - to shape our intuition about how contemporary algorithms work.

For example, we found that H.P. Luhn’s 1958 paper The Automatic Creation of Literary Abstracts provided a simple heuristic to help wrap our heads around the basic steps that go into probabilistic models for summarizing text. (For those interested in history, Luhn also wrote a paper about business intelligence in 1958 that feels like it could have been written today, as it highlights the growing need to automate information retrieval to manage an unwieldy amount of information.) Our design lead, Grant Custer, designed a prototype you can play with to walk through Luhn’s method. 

Here’s the link to access the live demo. Feel free to use the suggested text, or to play around your own (and share results on Twitter!). 

Luhn’s algorithm begins by transforming the content of sentences into a mathematical expression, or vector. He uses a “bag of words” model, which ignores filler words like “the” or “and”, and counts the number of times remaining words appear in each sentence.

image

Luhn’s intuition was that a word that appears many times in a document is important to the document’s meaning. Under this assumption, a sentence that contains many of the words that appear many times in the overall document is itself highly representative of that document. In our demo, if a document’s most significant words are protein (appears 8 times) and DNA (appears 7 times), then this implies that the sentence “Proteins are made by tiny machines in the cell called ribosomes” is a useful one to extract in the summary. Once this sentence scoring is complete, the last step is simply to select those sentences with the highest overall rankings. 

image

Luhn himself notes that his method for determining the relative significance of sentences “gives no consideration to the meaning of words or the arguments expressed by word combinations.” It is, rather, a “probabilistic one” based on counting. The algorithm does not select the sentence about ribosomes given its understanding of the importance ribosomes have to the topic in question; it selects that sentence because it densely packs together words that appear frequently across the longer document. 

The contemporary approaches we study in our upcoming report build upon this basic theme. One approach, topic modeling using Latent Dirichlet Allocation (LDA), groups together words that co-occur into mathematical expressions called topics and then represents documents as a short vector of different topics weights (e.g., 50% words from the the protein topic, 30% words from the DNA topic, and 20% from the gene topic). While the mathematical models that determine these topics are much more complex than simply counting a bag of words, LDA borrows Luhn’s basic insight: that we can quantify semantic meaning as the relative distribution of like items in a data set.

Stay tuned for more exciting language processing and deep learning resources throughout the spring! 

- Kathryn 

Read more

Newer
Mar 28, 2016 · announcement
Older
Feb 24, 2016 · post

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.