Blog

Jun 29, 2018 · newsletter

Sequence labeling with semi-supervised multi-task learning

Sequence labeling tasks attempt to assign a categorical label to each member in the sequence. In natural language processing, where a sequence generally refers to a sentence, examples of sequence labeling include named entity recognition (NER), part-of-speech tagging (POS) and error detection. NER, as the name implies, tries to recognize names in a sentence and classify them into pre-defined labels such as Person and Organization. POS tagging assigns labels such as noun, verb, and adjective to each word, while error detection identifies grammatical errors in sentences. In many of these tasks, the relevant labels in the dataset are very sparse and most of the words contribute very little to the training process. But why let the data go to waste?

A recent paper proposes using multitask learning to make more use of the available data. In addition to assigning labels to each token (or words, loosely), the authors propose a model that also predicts the surrounding words in the dataset. By adding the secondary unsupervised objective, “the model is required to learn more general patterns of semantic and syntactic composition, which can be reused in order to predict individual labels more accurately".

For the sequence modeling neural network, the authors take one sentence as input and use a bidirectional Long Short Term Memory network (LSTM) to assign a label to every token in the sentence. Each sentence is first tokenized and the resulting tokens are mapped into a sequence of word embeddings before being fed into the LSTM. Two LSTM components, moving in opposite directions (forward and backward) through the sentence, are then used for constructing context-dependent representations for every word. The hidden representations from both LSTMs are concatenated in order to obtain a context-specific representation for each word. This concatenated representation is passed through a feed-forward layer, allowing the model to learn features based on both context directions. To predict a label for each token, the authors use either a softmax or conditional random field (CRF) output architecture. Softmax predicts each label independently. CRF, on the other hand, handles dependencies between subsequent labels by looking for the best label sequence.

To predict the surrounding words, the authors cannot use the concatenated (forward and backward) representation because it contains information on both the previous word and next word. Instead, they use the pre-concatenated version. The hidden representation from the forward-moving LSTM is used to predict the next word; the hidden representation from the backward-moving LSTM is used to predict the previous word.

Architecture of the sequence labeling model with secondary task of predicting surrounding words. The input tokens are shown at the bottom; the expected output labels are at the top.

The architecture was evaluated on a range of datasets, covering the tasks of error detection, named entity recognition, chunking, and POS-tagging. Introducing a secondary task resulted in consistent performance improvements on every benchmark. The largest benefit was observed on the task of error detection - perhaps due to the very sparse and unbalanced label distribution in the dataset.

Read more

Newer
Jul 24, 2018 · post
Older
Jun 29, 2018 · newsletter

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.