Blog

Jul 31, 2018 · newsletter

Progress in machine learning interpretability

Our goal when we do research is to address capabilities and technologies that we expect to become production-ready in one to two years. That focus on fast-moving areas means that new algorithmic ideas sometimes come along that allow our clients to extend or improve upon the work in our reports.

We published our report on machine learning interpretability last year. The technical focus of our report was LIME, a tool that computes locally correct explanations of a model’s behaviour. If a model is good, LIME’s explanations can offer completely new insights. (We saw this in our prototype, which models customer churn using traditional machine learning techniques, but then uses LIME to say precisely what it is about a customer that makes them a churn risk.) And if a model is bad, LIME can help you understand why.

This all sounds great, but we had to leave three issues unresolved in our report. Progress since last year has begun to address those concerns.

LIME explanations of sentiment classification. “Not” is a positive word in one example, but not in another. Image credit: Anchors.

Firstly, LIME’s explanations are local. For example, a LIME explanation may (correctly) tell you that “This movie is not bad” has positive sentiment because it contains the word “not.” But because LIME’s explanations are local, a user is not generally entitled to conclude from this that the word “not” always indicates positive sentiment. This makes sense: the presence of “not” in “this movie is not very good” does not tell you its sentiment is positive! But how local is “local”? How similar to the original sentence does a new sentence need to be for LIME’s explanation to apply?

Anchors explanations of sentiment classification. “Not” is a positive word in combination with “bad.” Image credit: Anchors.

The creators of LIME offer an answer to this question in the form of Anchors: High-Precision Model-Agnostic Explanations(PDF, 2.7MB).” Anchors works like LIME in that it probes the behaviour of the black-box model by perturbing the original example. But it takes a very different approach to constructing a human-friendly explanation. Rather than fit a locally correct linear model (which raises the question: how local?), it constructs a set of rules. For the “this movie is not bad” example above, the rule might be “sentence contains ‘not’ and ‘bad’". Such black and white rules are easier for many people to understand than quantitative weights. And they implicitly define locality: if the sentence doesn’t contain “not” or “bad,” the rule (and the explanation) doesn’t apply. The Anchors code is publicly available.

SHAP explanation of a prediction for a model of the Boston house price dataset.

Secondly, LIME’s choice of perturbation strategy and its local linear model are heuristics – which is to say they feel a little arbitrary, and it’s reasonable to wonder whether they are optimal in practice. In A Unified Approach to Interpreting Model Predictions Lundberg and Lee carefully define what we mean by optimal, and show that LIME is a specific example of a more general class of explanation tools they call “additive feature attribution methods.” This class includes the classical “Shapley” feature importance measure familiar to economists, and DeepLIFT, a neural network interpretability tool. They unify this class in a provably optimal way they call SHAP. The code is public, and is highly optimized for the particular case of tree-based methods such as XGboost. One thing we really like about SHAP is that the built-in visualization tools are very nice! This seemingly minor point is surprisingly important to the adoption of new tools, and we’re glad to see these authors spend time on this aspect of their code.

Finally, how do we test explanations? How do we know whether an explanation is evidence of a problem with the model or a surprising insight? Patrick Hall and colleagues at H2O.ai sum up the current situation very well in a new article for O’Reilly Testing machine learning interpretability techniques. The conclusion is: “use more than one type of tool to explain your machine learning models, and look for consistent results across different explanatory methods.” We agree, and we’re glad to see new options such as Anchors and SHAP that make this easy!

So, a year after our report, machine learning interpretability remains not only a very useful business capability, but a vibrant area of research.

Read more

Newer
Aug 15, 2018 · scifi
Older
Jul 31, 2018 · newsletter

Latest posts

Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Jul 29, 2022 · post

Ethical Considerations When Designing an NLG System

by Andrew Reed · Blog Series This post serves as Part 4 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System At last, we’ve made it to the final chapter of this blog series.
...read more
Jul 11, 2022 · post

Automated Metrics for Evaluating Text Style Transfer

by Andrew & Melanie · By Andrew Reed and Melanie Beck Blog Series This post serves as Part 3 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System In our previous blog post, we took an in-depth look at how to neutralize subjectivity bias in text using HuggingFace transformers.
...read more
May 5, 2022 · post

Neutralizing Subjectivity Bias with HuggingFace Transformers

by Andrew Reed · Blog Series This post serves as Part 2 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Subjective language is all around us – product advertisements, social marketing campaigns, personal opinion blogs, political propaganda, and news media, just to name a few examples.
...read more
Mar 22, 2022 · post

An Introduction to Text Style Transfer

by Andrew Reed · Blog Series This post serves as Part 1 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Today’s world of natural language processing (NLP) is driven by powerful transformer-based models that can automatically caption images, answer open-ended questions, engage in free dialog, and summarize long-form bodies of text – of course, with varying degrees of success.
...read more
Jan 31, 2022 · post

Why and How Convolutions Work for Video Classification

by Daniel Valdez-Balderas · Video classification is perhaps the simplest and most fundamental of the tasks in the field of video understanding. In this blog post, we’ll take a deep dive into why and how convolutions work for video classification. Our goal is to help the reader develop an intuition about the relationship between space (the image part of video) and time (the sequence part of video), and pave the way to a deep understanding of video classification algorithms.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com
Notebook

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.
https://colab.research.google.com/drive/1pjPzsw_uZew-Zcz646JTkRDhF2GkPk0N

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.