Blog

Jul 31, 2018 · newsletter

Progress in machine learning interpretability

Our goal when we do research is to address capabilities and technologies that we expect to become production-ready in one to two years. That focus on fast-moving areas means that new algorithmic ideas sometimes come along that allow our clients to extend or improve upon the work in our reports.

We published our report on machine learning interpretability last year. The technical focus of our report was LIME, a tool that computes locally correct explanations of a model’s behaviour. If a model is good, LIME’s explanations can offer completely new insights. (We saw this in our prototype, which models customer churn using traditional machine learning techniques, but then uses LIME to say precisely what it is about a customer that makes them a churn risk.) And if a model is bad, LIME can help you understand why.

This all sounds great, but we had to leave three issues unresolved in our report. Progress since last year has begun to address those concerns.

LIME explanations of sentiment classification. “Not” is a positive word in one example, but not in another. Image credit: Anchors.

Firstly, LIME’s explanations are local. For example, a LIME explanation may (correctly) tell you that “This movie is not bad” has positive sentiment because it contains the word “not.” But because LIME’s explanations are local, a user is not generally entitled to conclude from this that the word “not” always indicates positive sentiment. This makes sense: the presence of “not” in “this movie is not very good” does not tell you its sentiment is positive! But how local is “local”? How similar to the original sentence does a new sentence need to be for LIME’s explanation to apply?

Anchors explanations of sentiment classification. “Not” is a positive word in combination with “bad.” Image credit: Anchors.

The creators of LIME offer an answer to this question in the form of Anchors: High-Precision Model-Agnostic Explanations(PDF, 2.7MB).” Anchors works like LIME in that it probes the behaviour of the black-box model by perturbing the original example. But it takes a very different approach to constructing a human-friendly explanation. Rather than fit a locally correct linear model (which raises the question: how local?), it constructs a set of rules. For the “this movie is not bad” example above, the rule might be “sentence contains ‘not’ and ‘bad’". Such black and white rules are easier for many people to understand than quantitative weights. And they implicitly define locality: if the sentence doesn’t contain “not” or “bad,” the rule (and the explanation) doesn’t apply. The Anchors code is publicly available.

SHAP explanation of a prediction for a model of the Boston house price dataset.

Secondly, LIME’s choice of perturbation strategy and its local linear model are heuristics – which is to say they feel a little arbitrary, and it’s reasonable to wonder whether they are optimal in practice. In A Unified Approach to Interpreting Model Predictions Lundberg and Lee carefully define what we mean by optimal, and show that LIME is a specific example of a more general class of explanation tools they call “additive feature attribution methods.” This class includes the classical “Shapley” feature importance measure familiar to economists, and DeepLIFT, a neural network interpretability tool. They unify this class in a provably optimal way they call SHAP. The code is public, and is highly optimized for the particular case of tree-based methods such as XGboost. One thing we really like about SHAP is that the built-in visualization tools are very nice! This seemingly minor point is surprisingly important to the adoption of new tools, and we’re glad to see these authors spend time on this aspect of their code.

Finally, how do we test explanations? How do we know whether an explanation is evidence of a problem with the model or a surprising insight? Patrick Hall and colleagues at H2O.ai sum up the current situation very well in a new article for O’Reilly Testing machine learning interpretability techniques. The conclusion is: “use more than one type of tool to explain your machine learning models, and look for consistent results across different explanatory methods.” We agree, and we’re glad to see new options such as Anchors and SHAP that make this easy!

So, a year after our report, machine learning interpretability remains not only a very useful business capability, but a vibrant area of research.

Read more

Newer
Aug 15, 2018 · scifi
Older
Jul 31, 2018 · newsletter

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.