Blog

Dec 28, 2018 · newsletter

The business case for federated learning

Last month, we released Federated Learning, the latest report and prototype from Cloudera Fast Forward Labs.

Federated learning makes it possible to build machine learning systems without direct access to training data. The data remains in its original location, which helps to ensure privacy and reduces communication costs.

The report and prototype

Federated learning in a nutshell

To train a machine learning model you usually need to move all the data to a single machine or, failing that, to a cluster of machines in a data center.

This can be difficult for two reasons.

First, the creator of the data may simply not want to share it with you. Maybe the data is baby photos, or competitively sensitive manufacturing data, or legally protected medical data. We’ll give more examples below.

Second, there are often practical communication challenges. A huge amount of valuable training data is created on hardware at the edges of slow and unreliable networks, such as smartphones, IoT devices, or equipment in far-flung industrial facilities, such as mines and oil rigs. Communication with such devices can be slow and expensive.

The solution is federated learning. This is when a server coordinates a network of nodes, each of which has training data that it cannot or will not share directly. The nodes each train a local model, and it is that model which they share with the server. The server merges the models into a single federated model, sends the merged model back out to the nodes, and another round of local training takes place. (For much more technical detail, see our article on the Fast Forward Labs blog.)

Crucially: The server never has direct access to the training data. By moving models rather than training data, federated learning helps to ensure privacy and minimizes communication costs.

Let’s now look at some examples of what you can do with federated learning.

Smartphones

Machine learning has huge potential to improve the user experience on smartphones. Apps could learn to spot good baby photos and proactively offer to share them with friends and family. They could make it easier to write emails that are more likely to receive quick replies. And they could make composing text messages even quicker and easier by accurately suggesting the next phrase, whatever the language.

But aside from the practical challenge of getting this data off a device with a slow connection, the personal aspect of some of this data (what people type, where they travel, what websites they visit) makes it problematic. Users are reluctant to share this sensitive data, and possessing it exposes technology companies to security risks and regulatory burdens. These characteristics make it a great fit for federated learning. The use case is so compelling that it comes as no surprise that Google researchers are usually credited with its invention, and Samsung engineers have also contributed significant ideas.

Healthcare

The healthcare industry offers huge financial incentives to develop effective treatments and predict outcomes. But the training data required to apply machine learning to these problems is of course extremely sensitive. The consequences of actual and potential privacy violations can be serious.

By keeping the training data in the hands of patients or providers, federated learning has the potential to make it possible to collaboratively build models that save lives and generate huge value. Paris-based Owkin is among the most ambitious users of federated learning that we spoke to during our research. They provide a platform that allows healthcare providers to collaborate on a wide range of healthcare problems.

Predictive maintenance

Suppose a manufacturer wants to develop a predictive maintenance model for a piece of equipment they sell. This model needs training data—but testing lots of turbines until they fail in order to acquire that data would be expensive for the manufacturer. It would be less costly for the manufacturer if its customers were to send it such data. More importantly, the failures actual customers experience will be more representative of real-world use than those the manufacturer would see in factory experiments. In short, training data acquired from customers would be cheaper and better.

But there are several problems. Some of their customers are reluctant to share details about equipment failures with vendors or competitors. Some operate in countries such as China, where industrial facilities can be legally prevented from exporting data. And, as a practical matter, the volume of data can be enormous, which makes streaming it back to the manufacturer an engineering challenge.

This too is a great fit for federated learning! If the manufacturer takes this approach, they can train a better model with less expense. And customers get access to a model that is better than one they could train on their own, without compromising the security of their data.

Turbofan Tycoon

This situation is the focus of our interactive prototype, Turbofan Tycoon. In that, you play a user of industrial equipment who can adopt various maintenance strategies. Spoiler alert: the optimal strategy is federated learning, and the ROI relative to the alternatives huge!

Conclusion

In moving the majority of the work to the edge, federated learning is part of the trend to move machine learning out of the data center, for reasons that include speed and cost. But in federated learning, the edge nodes create and improve the model (rather than merely applying it). In this sense, federated learning goes far beyond what people usually mean when they talk about edge AI.

Federated learning makes it easier, safer and cheaper to apply machine learning in the world’s most regulated, competitive, and profitable industries.

This article only scratches the surface. Our report goes into much more detail, and covers use cases not mentioned here (including video analytics and corporate IT). And of course we get into the technical details, including systems and networking issues, libraries and frameworks, and practical recommendations based on our experience building Turbofan Tycoon.

Read more

Newer
Jan 29, 2019 · newsletter
Older
Dec 18, 2018 · post

Latest posts

Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Jul 29, 2022 · post

Ethical Considerations When Designing an NLG System

by Andrew Reed · Blog Series This post serves as Part 4 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System At last, we’ve made it to the final chapter of this blog series.
...read more
Jul 11, 2022 · post

Automated Metrics for Evaluating Text Style Transfer

by Andrew & Melanie · By Andrew Reed and Melanie Beck Blog Series This post serves as Part 3 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System In our previous blog post, we took an in-depth look at how to neutralize subjectivity bias in text using HuggingFace transformers.
...read more
May 5, 2022 · post

Neutralizing Subjectivity Bias with HuggingFace Transformers

by Andrew Reed · Blog Series This post serves as Part 2 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Subjective language is all around us – product advertisements, social marketing campaigns, personal opinion blogs, political propaganda, and news media, just to name a few examples.
...read more
Mar 22, 2022 · post

An Introduction to Text Style Transfer

by Andrew Reed · Blog Series This post serves as Part 1 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Today’s world of natural language processing (NLP) is driven by powerful transformer-based models that can automatically caption images, answer open-ended questions, engage in free dialog, and summarize long-form bodies of text – of course, with varying degrees of success.
...read more
Jan 31, 2022 · post

Why and How Convolutions Work for Video Classification

by Daniel Valdez-Balderas · Video classification is perhaps the simplest and most fundamental of the tasks in the field of video understanding. In this blog post, we’ll take a deep dive into why and how convolutions work for video classification. Our goal is to help the reader develop an intuition about the relationship between space (the image part of video) and time (the sequence part of video), and pave the way to a deep understanding of video classification algorithms.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com
Notebook

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.
https://colab.research.google.com/drive/1pjPzsw_uZew-Zcz646JTkRDhF2GkPk0N

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter