Blog

Dec 28, 2018 · newsletter

The business case for federated learning

Last month, we released Federated Learning, the latest report and prototype from Cloudera Fast Forward Labs.

Federated learning makes it possible to build machine learning systems without direct access to training data. The data remains in its original location, which helps to ensure privacy and reduces communication costs.

The report and prototype

Federated learning in a nutshell

To train a machine learning model you usually need to move all the data to a single machine or, failing that, to a cluster of machines in a data center.

This can be difficult for two reasons.

First, the creator of the data may simply not want to share it with you. Maybe the data is baby photos, or competitively sensitive manufacturing data, or legally protected medical data. We’ll give more examples below.

Second, there are often practical communication challenges. A huge amount of valuable training data is created on hardware at the edges of slow and unreliable networks, such as smartphones, IoT devices, or equipment in far-flung industrial facilities, such as mines and oil rigs. Communication with such devices can be slow and expensive.

The solution is federated learning. This is when a server coordinates a network of nodes, each of which has training data that it cannot or will not share directly. The nodes each train a local model, and it is that model which they share with the server. The server merges the models into a single federated model, sends the merged model back out to the nodes, and another round of local training takes place. (For much more technical detail, see our article on the Fast Forward Labs blog.)

Crucially: The server never has direct access to the training data. By moving models rather than training data, federated learning helps to ensure privacy and minimizes communication costs.

Let’s now look at some examples of what you can do with federated learning.

Smartphones

Machine learning has huge potential to improve the user experience on smartphones. Apps could learn to spot good baby photos and proactively offer to share them with friends and family. They could make it easier to write emails that are more likely to receive quick replies. And they could make composing text messages even quicker and easier by accurately suggesting the next phrase, whatever the language.

But aside from the practical challenge of getting this data off a device with a slow connection, the personal aspect of some of this data (what people type, where they travel, what websites they visit) makes it problematic. Users are reluctant to share this sensitive data, and possessing it exposes technology companies to security risks and regulatory burdens. These characteristics make it a great fit for federated learning. The use case is so compelling that it comes as no surprise that Google researchers are usually credited with its invention, and Samsung engineers have also contributed significant ideas.

Healthcare

The healthcare industry offers huge financial incentives to develop effective treatments and predict outcomes. But the training data required to apply machine learning to these problems is of course extremely sensitive. The consequences of actual and potential privacy violations can be serious.

By keeping the training data in the hands of patients or providers, federated learning has the potential to make it possible to collaboratively build models that save lives and generate huge value. Paris-based Owkin is among the most ambitious users of federated learning that we spoke to during our research. They provide a platform that allows healthcare providers to collaborate on a wide range of healthcare problems.

Predictive maintenance

Suppose a manufacturer wants to develop a predictive maintenance model for a piece of equipment they sell. This model needs training data—but testing lots of turbines until they fail in order to acquire that data would be expensive for the manufacturer. It would be less costly for the manufacturer if its customers were to send it such data. More importantly, the failures actual customers experience will be more representative of real-world use than those the manufacturer would see in factory experiments. In short, training data acquired from customers would be cheaper and better.

But there are several problems. Some of their customers are reluctant to share details about equipment failures with vendors or competitors. Some operate in countries such as China, where industrial facilities can be legally prevented from exporting data. And, as a practical matter, the volume of data can be enormous, which makes streaming it back to the manufacturer an engineering challenge.

This too is a great fit for federated learning! If the manufacturer takes this approach, they can train a better model with less expense. And customers get access to a model that is better than one they could train on their own, without compromising the security of their data.

Turbofan Tycoon

This situation is the focus of our interactive prototype, Turbofan Tycoon. In that, you play a user of industrial equipment who can adopt various maintenance strategies. Spoiler alert: the optimal strategy is federated learning, and the ROI relative to the alternatives huge!

Conclusion

In moving the majority of the work to the edge, federated learning is part of the trend to move machine learning out of the data center, for reasons that include speed and cost. But in federated learning, the edge nodes create and improve the model (rather than merely applying it). In this sense, federated learning goes far beyond what people usually mean when they talk about edge AI.

Federated learning makes it easier, safer and cheaper to apply machine learning in the world’s most regulated, competitive, and profitable industries.

This article only scratches the surface. Our report goes into much more detail, and covers use cases not mentioned here (including video analytics and corporate IT). And of course we get into the technical details, including systems and networking issues, libraries and frameworks, and practical recommendations based on our experience building Turbofan Tycoon.

Read more

Newer
Jan 29, 2019 · newsletter
Older
Dec 18, 2018 · post

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.