May 29, 2019 · newsletter

Open-ended Text Generation

The goal in open-ended text generation is to create a coherent portion of text that is a continuation from the given context. For example, given a couple of sentences, this capability makes it possible for machines to self-write a coherent story. One can imagine using such a system for AI-assisted writing, but of course it can also be repurposed to generate misleading (fake) news articles.

Ovid’s Unicorn, written by OpenAI’s GPT-2, offers a glimpse of the state-of-the art. Because it can generate astonishingly human-like passages, the full GPT-2 model was not released initially (in Feb 2019) due to ethical concerns. This decision resulted in a lively debate within the machine learning community. (OpenAI has since decided (in May 2019) to use two mechanisms for responsibly publishing GPT-2: staged release and partnership-based sharing.)

How text generation works

To generate text, we typically use a language model along with a decoder. The language model can be an LSTM, or something based on the Transformer architecture, such as the GPT model. The language model outputs the likelihood of each word in the vocabulary being the next word in the sequence. Ideally, the decoder then picks the best sequence of words that leads to the highest probability (likelihood) based on this information. To do this, one has to search through all the possible sequences of words - this computation is not tractable. As such, two approaches are used in practice: greedy search and beam search.

In greedy search, the decoder picks the word that has the highest likelihood of being the next word in the sequence. It only looks at the next word, and in doing so, is only exploring one path to building a sequence of words.

A better approach is beam search. Rather than exploring a single path, beam search keeps track of multiple paths. While beam search is effective for non-open-ended generation tasks such as machine translation, data-to-text generation, and summarization, it does not work well for open-ended text generation.

Why doesn’t beam search work for open-ended text generation?

Using beam search as a decoder for open-ended generation results in text that is strangely bland and repetitive. This is not because of “search error, where beam search failed to find higher quality sentences to which the model assigns higher probability than to the decoded ones.” Rather, the fundamental problem is the maximum likelihood decoding objective.

Example of degenerate text using beam search. Credit

Example of degenerate text using beam search. (credit)

It turns out likelihood maximization approaches such as beam search tend to produce sentences that loop repetitively. Further, the probability of forming a loop (“I don’t know, I don’t know, I don’t know”) increases with a longer loop - once looping starts, it is difficult to get out of it. In addition, probability distribution of human-generated text turns out to be very different from machine-generated text. When using a maximum likelihood framework, the machine-generated text is composed of tokens that are highly probable, but human-generated text exhibits much richness and variance.

Human text is rich and surprising. credit

Human text is rich and surprising. (credit)


Recently two approaches based on the idea of randomization have been shown to work much better for open-ended generation. In top-k sampling, the decoder randomly samples from the top-k most likely next words. This is the approach used to generate Ovid’s Unicorn. Another approach is to “select the highest probability tokens whose cumulative probability mass exceeds a pre-chosen threshold”. In other words, instead of selecting k tokens, we select n tokens where the summation of the probability from all n tokens exceed a certain threshold, p. This results in a different number of possible next words (vs k fixed candidates) each time, and can be particularly effective when we have a large number of words with almost equal likelihoods. Using top-5, we would have just picked 5. The remaining (10 for example) will have been left out, even though these words have similar likelihood when compared to the top 5.

We are excited about the technical advances in open-ended text generation, but are cautiously optimistic for these advances to be put to good use for safe and ethical machine learning.

Read more

May 29, 2019 · newsletter
May 22, 2019 · featured post

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series. more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck. more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers. more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance. more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books. more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team. more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)


In-depth guides to specific machine learning capabilities


Machine learning prototypes and interactive notebooks

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!


A usable library for question answering on large datasets.

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.