Blog

Feb 5, 2020 · featured post

Deep Learning for Anomaly Detection

The full Deep Learning for Anomaly Detection report is now available.

You can also catch a replay of the webinar we reference below on demand here.


In recent years, we have seen an unprecedented increase in the availability of data in a variety of domains: manufacturing, health care, finance, IT, and others. Applications leverage this data to make informed decisions. This comes with its own set of challenges (and opportunities) when things start to fail; for instance, what happens when a piece of equipment fails or a network suffers from a security vulnerability? Companies may lose customers, or fixing things could take a while (which in turn adds to the costs). In short, everything from the organization’s bottom line to its reputation are at stake.

But what if we had the ability to reliably detect or identify when something goes wrong? This is the premise of anomaly detection, and the subject of our latest report.

Given the importance of the anomaly detection task, multiple approaches have been proposed and rigorously studied over the last few decades. The underlying strategy for most approaches to anomaly detection is to first model normal behavior, and then exploit this knowledge in identifying deviations (anomalies). This approach typically falls under the semi-supervised category and is accomplished across two steps in the anomaly detection loop.

The first step, which we can refer to as the training step, involves building a model of normal behavior using available data. Depending on the specific anomaly detection method, this training data may contain both normal and abnormal data points or only normal data points. Based on this model, an anomaly score is then assigned to each data point that represents a measure of deviation from normal behavior.

Figure 1: Training - Modeling normal behavior

The second step in the anomaly detection loop - the test step - introduces the concept of threshold-based anomaly tagging. Given the range of scores assigned by the model, we can select a threshold rule that drives the anomaly tagging process - e.g., scores above a given threshold are tagged as anomalies, while those below it are tagged as normal.

Figure 2: Testing - Threshold-based anomaly detection

As data becomes high dimensional, it is increasingly challenging to effectively teach a model to recognize normal behavior. This is where deep learning approaches step in. The approaches discussed in our upcoming report typically fall under the encoder-decoder family, where an encoder learns to generate an internal representation of the input data, and a decoder attempts to reconstruct the original input based on this internal representation. While the exact techniques for encoding and decoding vary across models, the overall benefit they offer is the ability to learn the distribution of normal input data and construct a measure of anomaly respectively.

The forthcoming report and prototype from Cloudera Fast Forward Labs explores various such deep learning approaches and their implications. While deep learning approaches can yield remarkable results on complex and high dimensional data, there are several factors that influence the choice of approach when building an anomaly detection application. In our report we survey various approaches, highlight their pros and cons, and discuss resources and recommendations for setting up anomaly detection in a production environment, as well as technical and ethical considerations.

Want to learn more? Join us on Thursday, February 13th at 10:00am PST (1:00pm EST) for a live webinar on “Deep Learning for Anomaly Detection.” Nisha Muktewar and Victor Dibia of Cloudera Fast Forward Labs will be joined by Meir Toledano, Algorithms Engineer at Anodot.

Read more

Newer
Feb 20, 2020 · post
Older
Jan 29, 2020 · post

Latest posts

Jul 29, 2022 · post

Ethical Considerations When Designing an NLG System

by Andrew Reed · Blog Series This post serves as Part 4 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System At last, we’ve made it to the final chapter of this blog series.
...read more
Jul 11, 2022 · post

Automated Metrics for Evaluating Text Style Transfer

by Andrew & Melanie · By Andrew Reed and Melanie Beck Blog Series This post serves as Part 3 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System In our previous blog post, we took an in-depth look at how to neutralize subjectivity bias in text using HuggingFace transformers.
...read more
May 5, 2022 · post

Neutralizing Subjectivity Bias with HuggingFace Transformers

by Andrew Reed · Blog Series This post serves as Part 2 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Subjective language is all around us – product advertisements, social marketing campaigns, personal opinion blogs, political propaganda, and news media, just to name a few examples.
...read more
Mar 22, 2022 · post

An Introduction to Text Style Transfer

by Andrew Reed · Blog Series This post serves as Part 1 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Today’s world of natural language processing (NLP) is driven by powerful transformer-based models that can automatically caption images, answer open-ended questions, engage in free dialog, and summarize long-form bodies of text – of course, with varying degrees of success.
...read more
Jan 31, 2022 · post

Why and How Convolutions Work for Video Classification

by Daniel Valdez-Balderas · Video classification is perhaps the simplest and most fundamental of the tasks in the field of video understanding. In this blog post, we’ll take a deep dive into why and how convolutions work for video classification. Our goal is to help the reader develop an intuition about the relationship between space (the image part of video) and time (the sequence part of video), and pave the way to a deep understanding of video classification algorithms.
...read more
Dec 14, 2021 · post

An Introduction to Video Understanding: Capabilities and Applications

by Daniel Valdez Balderas · Video footage constitutes a significant portion of all data in the world. The 30 thousand hours of video uploaded to Youtube every hour is a part of that data; another portion is produced by 770 million surveillance cameras globally. In addition to being plentiful, video data has tremendous capacity to store useful information. Its vastness, richness, and applicability make the understanding of video a key activity within the field of computer vision.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com
Notebook

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.
https://colab.research.google.com/drive/1pjPzsw_uZew-Zcz646JTkRDhF2GkPk0N

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter