Blog

Apr 1, 2020 · post

Bias in Knowledge Graphs - Part 1

Introduction

This is the first part of a series to review Bias in Knowledge Graphs (KG). We aim to describe methods of identifying bias, measuring its impact, and mitigating that impact. For this part, we’ll give a broad overview of this topic.

image credit: Mediamodifier from Pixabay

Motivation

Knowledge graphs, graphs with built-in ontologies, create unique opportunities for data analytics, machine learning, and data mining. They do this by enhancing data with the power of connections and human knowledge. Microsoft, Google, and Facebook actively use knowledge graphs in their products, and the interest from large and medium enterprises is accelerating. Andrew Reed gives a great overview of knowledge graphs in a previous article.

How are knowledge graphs used? Often they are deployed in the backend of an application, for example, supporting search results or responses from conversational AI. In other cases, knowledge graphs are used more directly to grow a knowledge base by finding or validating new information.

As the usage of this technology ramps up, bias in these systems becomes a problem that can contaminate results, degrading the user experience or driving bad decisions. In the last 1-2 years, interest has grown in identifying and removing bias.

Here are some hypothetical cases where bias in knowledge graphs could raise issues:

Conversational AI: Catherine, a college junior, interacts with a ‘career bot’, a conversational AI agent that offers job advice to graduating students. A knowledge graph based on the university’s record of successful alumni underpins the AI agent. Catherine is a pre-med major with aspirations to become a surgeon. In the school’s records, most successful surgeons are male. The conversational AI steers Catherine towards medical fields where there are historically more women.

image credit: bongkarn thanyakij from Pexels

Search: John is using a search engine to research vaccines. He is a layman with no deep knowledge of this area. The search results include hyperlinks and a sidebar of information and links generated from a large structured data source (based on “Wiki-Encyclopedia”). Wiki-Encyclopedia’s article has been curated and updated by many people who have strong – but false – notions about the side-effects and efficacy of vaccines. As a result, when John reviews the search results and sidebar, he comes away with flawed – not well informed – notions about vaccines.

Knowledge Base Building: A hospital is building and expanding a knowledge graph. Part of this process involves algorithmically accepting or rejecting new ‘facts’ to add to the knowledge graph. If the foundational data is itself biased, it could lead to the machine rejecting legitimate facts that go against the bias of the foundational data.

Types of Bias

In general, our work is focused on bias that results in “systematic errors of judgment and decision making” by the consumers of KG & ML applications*.

Bias is a broad topic, which has many context-dependant definitions. Data scientists and statisticians are concerned with bias that is more technical and measurable, while less technical stakeholders may have their own definitions and standards for identifying when bias occurs.

Within the machine learning community, several types of bias have been identified and studied (Mehrabi, et. al. define 23 types of bias relevant to machine learning in a recent paper.)

Bias Along the ML/Analytical Pipeline

Aside from the types of bias, there are also places in the stages of an analytical or machine learning pipeline where bias can be identified.

Data. Structured and unstructured data form the raw materials for building knowledge graphs. This data can be crowd-sourced, as with Wikipedia and Amazon’s Mechanical Turk, or it can be gathered and curated privately, as with a private corporation’s records and transactions.

If data was generated by people with a prevalent opinion (self-selection bias) or from a majority of people of a certain cultural perspective (sometimes called representational or population bias), this can impact the downstream results. An example of self-selection bias is when customers who have strong motivations write service reviews. These may not reflect that majority of customers, but if a knowledge graph is built on top of such data, it may learn a distorted view of customer sentiment.

Semantic/Ontology. Ontologies are a framework of meaning which supports the input data and their relationships. Such frameworks are constructed top-down or bottoms-up, and can be manually designed or formed algorithmically. If built by a team of experts, conscious and representational bias can impact the structure of the ontology. If built by machine, bias in the underlying data can bleed into the ontology.

An example can be found in geographical ontologies. Anthropocentric biases lead designers to over emphasize human-centric locations versus natural ones. The Place branch of the DBpedia ontology (as of 2015), contained “dozens or even hundreds of classes for various sub-classes of restaurants, bars, and music venues, but only a handful of classes for natural features such as rivers” [Jancowicz].

Knowledge Graph Embeddings. Embeddings are lower-dimensional representations that enable more efficient processing of knowledge graph data, which is normally in a high-dimensional, and hard-to-wrangle form. It has recently been shown that social biases in knowledge graphs can get passed on to their respective embeddings [Fisher].

Inferential. Inference refers to when a query, machine learning algorithm, or fact-learning algorithm learns from a knowledge graph, or its embeddings. An oft-mentioned example is that of an inferential algorithm learning that only men can be the US President, because historically that has been the only case.

Next Article

In the next part of this series, we’ll examine in more detail concrete examples of the data and ontology bias, and examine known methods to detect and measure such bias.

References

J. Fisher, Measuring Social Bias in Knowledge Graph Embeddings, Dec 2019.

K. Janowicz, et. al, Debiasing Knowledge Graphs: Why Female Presidents are not like Female Popes, Oct, 2018.

N. Mehrabi, et. al, A Survey of Bias and Fairness in Machine Learning, Sept 2019.

Notes

*Drawing from the definition in the K. Janowicz reference.

Read more

Newer
Apr 1, 2020 · newsletter
Older
Feb 27, 2020 · post

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.