Blog

Feb 3, 2016 · post

What History Teaches Us About Data Science

image
The FFL team at the New York Historical Society’s Silicon City exhibit

Study the past if you would define the future. — Confucius

Until April 17, 2016, the New York Historical Society is featuring an exhibition called Silicon City: Computer History Made in New York. The Fast Forward Labs team took a field trip to the museum back in December to augment our perspective on our current machine intelligence research (and, of course, to geek out and have fun). 

One of the highlights was to see Fast Forward Labs itself appear at the end of the tour! Indeed, the Society closes the exhibition with an interactive map displaying where innovative NYC startups are located today across Manhattan and the boroughs. We’re honored to be featured in this company spotlight, where we talk about why New York is an ideal home for the tech industry and what trends we envision for the city in the future. 

The exhibition led us to reflect on why we believe it’s important to remember our history as we build our future. Here are a few things we loved: 

1. Claude Shannon, the father of UX design?

We tend to think that machine learning is just taking off, but the foundations of many contemporary techniques date back to the 1950s (Frank Rosenblatt built his hardware Perceptron, the ancestor of the modern neural network, in 1957). 

One of our favorite items in Silicon City was a model of Theseus, the maze-solving mouse (as in rodent, not input device) Claude Shannon built using machine learning techniques. (Theseus was the Greek hero who navigated the labyrinth to kill the Minotaur, finding his way back out thanks to the ball of thread his lover Ariadne gave him to mark his path.) 

In 1952, Bell Labs produced a video where Shannon himself describes how Theseus can solve a “certain class of problems with trial and error and then remember the solution; in other words, he can learn from experience.” One of the most interesting aspects of the device is that the computing power does not reside in the mouse, but rather in a vast amount of hardware underneath the maze display. Theseus, therefore, is really just a UX feature, the metaphorical interface humans engage with to understand machine learning in their own sensory and intellectual terms. 

If we think about it, chat bots and other new linguistic interfaces are also a form of UX design. Thanks to advances in language generation technologies, designers can now present the output of complex data models as friendly conversations, not just simple and elegant buttons or visuals. 

The Greeks had three forms of time: aeon (eternity), chronos (linear time), and kairos (the right or opportune moment). Products, as data science techniques, follow the laws of kairos. Some products fail because they are released to market prematurely, only to soar in future generations (e.g., Apple Newton). Some algorithms fail because they don’t yet have adequate data to realize their computational potential, only to lead to amazing breakthroughs when more data is available (e.g., artificial neural networks). 

That said, data scientists and engineers have to retain perspective when selecting the right model to solve a given problem. The fact that everyone’s talking about reinforcement learning doesn’t mean it’s always the right approach. Simple, transparent statistical models still do a great job on certain classes of problems or under practical constraints (e.g., training time). 

We got a kick out of this failed Western Electric video conferencing system from 1968. Apparently adoption was low because people didn’t want to have to get out of their pajamas and comb their hair to talk on the phone! I must say I can empathize…

image

3. Statistics, computer science, and data science

We see many companies struggling to expand data efforts outside business intelligence/corporate financial analytics and into new product development. All the ink spilled of late on defining just what a data scientist is and what skills he/she should have is in part a symptom of the tectonic shift taking place in organizations. 

But again, it’s worth putting the discipline of data science in perspective as an evolution of statistics and software engineering. In his recent essay, 50 Years of Data Science, Stanford Statistics Professor David Donoho contextualizes data science in a 50-year history of statistics. Sean Owen (from Cloudera) writes a good response emphasizing the importance of software engineering in practice. 

4. IBM had really cool marketing in the 1930s-1950s

image
image

- Kathryn

Read more

Newer
Feb 16, 2016 · guest post
Older
Jan 22, 2016 · interview

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.