Blog

Aug 8, 2017 · post

Encartopedia

Tabula Rogeriana

The Tabula Rogeriana, a world map created by Muhammad al-Idrisi through traveler interviews in 1154.

The Wikipedia corpus is one of the favorite datasets of the machine learning community. It is often used for experimenting, benchmarking and providing how-to examples. These experiments are generally presented separate from the Wikipedia user interface, however, which has remained true to the early hypertext vision of the web. For this experiment, Encartopedia, I used machine learning techniques and visualization to explore new navigation possibilities for Wikipedia while preserving its hypertextual feel. With Encartopedia, you can map the path of any journey through Wikipedia, or use the visualization to jump to articles near and far.

Encartopedia

Encartopedia features the conventional Wikipedia interface in the left panel, and a mapping of articles based on similarity on the right.

Mapping articles

The starting point for the research was hatnote.com which has a glossary of Wikipedia visualizations and alternative user interfaces. Among those examples Wikigalaxy by Owen Cornec was the most inspiring for its attempt to map the semantic space of Wikipedia into a navigable space. From Wikigalaxy I borrowed the coordinates of their dimensionality reduction algorithm, mapping the articles to 2D coordinates for the 100,000 top Wikipedia articles.

The mapping of the top 100,000 articles makes up the base visualization in the right-hand panel of Encartopedia. The mapping is not only limited to those 100,000 articles, however. Any article you navigate to in Wikipedia can be located on the navigation map. To make this possible I used a method similar to this benchmark to create a fast index of 500 dimensional LSA vectors for all five million articles. I used Annoy to query the nearest neighbors of the chosen article and used triangulation to then place the article on the map. The nearest neighbors are also displayed above the Wikipedia article in the “Semantic Neighbors” section.

Categorizing clusters

In order to color code and categorize the topic clusters in the article map, I applied the DBSCAN clustering algorithm over the result of article coordinates. Unlike many other clustering algorithms DBSCAN doesn’t create evenly sized clusters, making it a good fit for the map clusters (after some parameter tuning). DBSCAN doesn’t assign categories to all the points but it is easy to assign those points to a cluster in the second pass using Nearest Neighbors. To name the clusters I scraped the Wikipedia categories assigned to those articles and found the top category shared between them.

Coloring the map

Color coding points by clustering using DBSCAN

Voronoi overlay of the map

Overlaying the clusters with a voronoi diagram for mouseover interactions.

Making it interactive

The UI is build using React and Redux. The map is mostly in three.js and rendered on a canvas except for the annotations which are SVG. Using D3.js is almost inevitable in any data-driven UI, especially with the modular design of version 4, however the DOM manipulation is done only with React.

The possibilities of encyclopedia cartography

My interest in Wikipedia is not just because I spend too much time reading random articles, but also because I am fascinated by the idea of the ultimate encyclopedia containing the totality of human knowledge. Once such an encyclopedia was an idealistic dream that was mostly fantasized about in literature, but now its accessibility has trivialized it to the point it no longer has its past allure. So maybe being able to map and log the navigation within this meta-space brings back a little bit of the old fantasy.

On the other hand hyperlinks are no longer the unique source of signifying the relation between two nodes on the web. The hypertext web is declining where social media indexes play a more important role in determining how much media objects on the web are valuable and related. Wikipedia is unique for remaining purely hypertextual. Encartopedia is also a celebration of the good old hypertextual web.

In the end I wanted to mention how grateful I am for Fast Forward Labs, especially Grant and Hilary for giving me the opportunity to work on this project which I have been fascinated with for a long time. I would also like to thank Micha for help with figuring out ML challenges and Raschin for help with UI, hatnote and Owen Cornec for inspiration and all the creators and contributors to the open-source projects I have used.

Sepand

Read more

Newer
Sep 1, 2017 · post
Older
Aug 7, 2017 · post

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.