Blog

Oct 2, 2017 · post

Probabilistic programming: an annotated bibliography

Earlier this year we launched a research report on probabilistic programming, an emerging programming paradigm that makes it easier to describe and train probabilistic models. The Bayesian probabilistic approach to model building and inference has many advantages in practical data science, including the ability to quantify risk (a superpower in industries like finance and insurance) and the ability to insert institutional knowledge (which is particularly useful when data is scarce). The rise of probabilistic programming languages has made it a more practical technique for time-constrained working data scientists.

If that sounds great to you, and you’re looking to learn more, the first thing you can do is — work with us! We’ll be glad to discuss our report, relevant use cases in your industry, and next steps to incorporate this approach into your data science work.

But you might also enjoy this list of our favorite resources for learning how to do Bayesian inference and build probabilistic programming systems. These are the books, papers and tutorials we found most useful when conducting our research.

Practical books

If you’re just starting out then we recommend either Doing Bayesian Data Analysis by John Kruschke, or Probabilistic Programming and Bayesian Methods for Hackers by Cameron Davidson-Pilon.

Krushke’s book uses R and Stan (and a language called JAGS, that is really only used for teaching these days). Davidson-Pilon uses Python and PyMC. Choose between these books based on your language preferences. If you don’t have a language preference, we at Fast Forward Labs recommend Davidson-Pilon’s book, which is available online, and in particular the PyMC3 edition (there are some important differences between PyMC3 and previous versions).

Theoretical books

The practical books above cover the basics of the theoretical and mathematical side, but if you’d like a deeper dive into why we do what we do, we recommend Data Analysis: A Bayesian Tutorial by Sivia and Skilling. It’s a relatively short and extremely clear book. For an even shorter introduction, we love Brendon Brewer’s lecture notes for STATS 331.

If your background is in economics or life sciences, you may prefer Data Analysis Using Regression and Multilevel/Hierarchical Models by Gelman and Hill. If your background is in physics or engineering, you may prefer Principals of Data Analysis by Prasenjit Saha (which is available free online).

Research

If you’d like a reading list of research papers, there is no better place to start than the excellent annotated bibliography published last year by Alexander Etz and colleagues. Their notes place the research in a historical and conceptual context, so this is in a sense the least technical document in this list. But the papers they discuss are academic research, so you’ll be grappling with some big ideas, including our favorite

The probability that a person is dead (i.e., data) given that a shark has bitten the person’s head off (i.e., theory) is 1. However, given that a person is dead, the probability that a shark has bitten this person’s head off is very close to zero”.

If you’re interested in the algorithmic and computational cutting edge (Hamiltonian Monte Carlo, variational methods, etc.) then we have a blog post that links to a selection of important papers.

Tutorials and articles

Finally, here are a selection of shorter and/or use-case specific practical articles we’ve found interesting and useful:

Read more

Newer
Oct 4, 2017 · post
Older
Sep 29, 2017 · newsletter

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.