Blog

Oct 26, 2017 · newsletter

Bias Mitigation Using the Copyright Doctrine of Fair Use

Pirating a copyrighted song, video, or e-book to listen to the song, watch the movie, or read the book is an infringement of copyright (which can be severely fined). So how about pirating a song, video, or e-book to train machine learning models?

NYU Teaching and Research Fellow Amanda Levendowski proposes a legal approach to reducing bias in machine learning models. Biased data leads to biased models, she argues, and use of existing public domain data, most of which is over 70 years old, introduces biases from a time before, e.g., the civil rights movement or the feminist movement of the mid-20th century. The copyright doctrine of fair use can reduce bias by allowing wider access to copyrighted training data - an interesting and novel proposal.

Word embeddings (numerical representations of language) are biased. While words like “he” vs. “she” or “wife” vs. “husband” are gendered words and should fall on opposite ends on the “gender axis” (x). Words like “brilliant” should not (image taken from Bolukbasi et al.).

Fair use is a legal doctrine that operates as a defense to copyright infringement. This century-old exception essentially gives a get-out-of-jail free card to copiers who would otherwise be liable for copyright infringement. Fair use doctrine permits the copying of copyrighted material on the grounds that the type of copying is beneficial to the public and not unreasonably harmful to the copyright holder.

Courts have not yet ruled on fair use in the machine learning context, though it seems likely that they will need to soon. And once courts have ruled on a few such cases, those rulings will set a precedent for subsequent similar situations. If the precedent allows fair use, machine learning researchers will have the freedom to use copyrighted material with little fear of infringement liability.

Levendowski argues: (1) use of copyrighted materials to train machine learning models should be considered fair use and (2) the resulting availability of these copyrighted materials as training data will help mitigate bias in the models trained with that data.

Levendowski steps through each factor in the legal test for fair use and makes good arguments for why machine learning model training should be fair use. The strongest of these points is that the use is transformative, i.e., it is not used for its primary purpose. For example, a copyrighted music recording was made to be sold and listened to by humans, perhaps over the radio or on a smartphone. Using that same recording to train a model would be a very different use, and one that advances our understanding of music. Courts have held that this weighs in favor of fair use. Also notable is the argument that the copyright owners are not harmed by the use. Using the recording in the example above does not prevent the copyright holder from selling or licensing the recording.

A neural net model trained on romance novels generates captions for images; fair use might remove bias, but it surely entertains (we recommend you check out the authors’ alternate model trained on Taylor Swift lyrics).

We find Levendowski’s fair use analysis persuasive from a legal standpoint, but the benefits, though real, are overstated. Applying fair use may reduce bias, but it would be very unlikely to fix it (as suggested by the title How Copyright Law Can Fix AI’s Implicit Bias Problem). There’s no reason to believe, for example, that a set of recent textbooks would contain any less bias than Wikipedia (data used already during model training).

Bias has many origins, some rooted in legal and social practices. To reduce bias in machine learning models, we need to change these practices. We hope that the federal courts, which will inevitably be faced with these copyright infringement lawsuits, will consult and heed Levendowski’s analysis.

Read more

Newer
Oct 26, 2017 · newsletter
Older
Oct 26, 2017 · post

Latest posts

Jul 29, 2022 · post

Ethical Considerations When Designing an NLG System

by Andrew Reed · Blog Series This post serves as Part 4 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System At last, we’ve made it to the final chapter of this blog series.
...read more
Jul 11, 2022 · post

Automated Metrics for Evaluating Text Style Transfer

by Andrew & Melanie · By Andrew Reed and Melanie Beck Blog Series This post serves as Part 3 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System In our previous blog post, we took an in-depth look at how to neutralize subjectivity bias in text using HuggingFace transformers.
...read more
May 5, 2022 · post

Neutralizing Subjectivity Bias with HuggingFace Transformers

by Andrew Reed · Blog Series This post serves as Part 2 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Subjective language is all around us – product advertisements, social marketing campaigns, personal opinion blogs, political propaganda, and news media, just to name a few examples.
...read more
Mar 22, 2022 · post

An Introduction to Text Style Transfer

by Andrew Reed · Blog Series This post serves as Part 1 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Today’s world of natural language processing (NLP) is driven by powerful transformer-based models that can automatically caption images, answer open-ended questions, engage in free dialog, and summarize long-form bodies of text – of course, with varying degrees of success.
...read more
Jan 31, 2022 · post

Why and How Convolutions Work for Video Classification

by Daniel Valdez-Balderas · Video classification is perhaps the simplest and most fundamental of the tasks in the field of video understanding. In this blog post, we’ll take a deep dive into why and how convolutions work for video classification. Our goal is to help the reader develop an intuition about the relationship between space (the image part of video) and time (the sequence part of video), and pave the way to a deep understanding of video classification algorithms.
...read more
Dec 14, 2021 · post

An Introduction to Video Understanding: Capabilities and Applications

by Daniel Valdez Balderas · Video footage constitutes a significant portion of all data in the world. The 30 thousand hours of video uploaded to Youtube every hour is a part of that data; another portion is produced by 770 million surveillance cameras globally. In addition to being plentiful, video data has tremendous capacity to store useful information. Its vastness, richness, and applicability make the understanding of video a key activity within the field of computer vision.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com
Notebook

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.
https://colab.research.google.com/drive/1pjPzsw_uZew-Zcz646JTkRDhF2GkPk0N

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter