Blog

Oct 26, 2017 · newsletter

Neuroscience-inspired AI

Pioneers in artificial intelligence (AI) have worked across multiple related fields, including computer science, AI, neuroscience, and psychology - but as each of these areas of research have grown in complexity and disciplinary boundaries have solidified, collaboration has become less commonplace. In Neuroscience-Inspired Artificial Intelligence, the co-founder of Google DeepMind Demis Hassabis, alongside other renowned neuroscientists, argues to revive collaborative efforts.

The (human) brain is a living case-in-point that human-level general AI is possible, but building it is a daunting task. The search space is vast and sparsely populated; biological intelligence provides a guide. Neuroscience can validate AI techniques that exist already: if known algorithms are found to be implemented in the brain, they are likely an integral component of general intelligence systems.

Neuroscience also provides a rich source of inspiration for new types of algorithms and architectures; a set of recent papers (Stachenfeld et al., Constantinescou at al.) suggests there are types of data representations sufficiently flexible and abstract as to support the remarkable human capacity of generalizing experiences to novel situations — a tough nut many AI researchers are looking to crack (i.e., transfer / one- or zero-shot learning) — and that a mechanism for constructing these (abstract) representations from sensory experience exists.

A Nobel-prized story of the hippocampus

It’s Nobel season, and in 2014, Edvard and May-Britt Moser, alongside John O’Keefe, were awarded the Nobel Prize in Physiology or Medicine for their discovery of a set of cells in the hippocampus (a brain structure deep inside the mammalian brain) thought to help us orient and navigate in space. Drivers of black-cabs in London, required to memorize some 25,000 streets and thousands of landmarks, for example, have a larger than usual hippocampus; their brains have adapted to the unique demands of their jobs.

Stachenfeld and colleagues show that the hippocampus does more than encode locations in space. Instead, it encodes “successor representations,” information about likely future locations given your current location.

Successor representations in decision making

Think about how you choose your route to work (or the next move in a game of chess or Go). You need to estimate the likely future reward of your decision in order to make a smart decision now. This is tricky, because the number of possible scenarios increases exponentially, the further you peek into the future. AlphaGo Zero, the Go playing champ built by Google DeepMind, uses advanced tree search (Monte Carlo tree search) to simulate the future in order to make smart decisions in the now.

Rats - capable of strategic, reward-maximizing decisions - are unlikely to use such computationally expensive methods. Successor representations offer a computationally less expensive yet flexible mechanism. They are a kind of look-up table that contains information about likely future states (e.g., locations) given the current state (i.e., where you will be, given where you are now). Combined with information about (future) reward, successor representations enable reward-maximizing decisions without expensive simulation. They also enable quick adaptation to changes in reward (a novel food source, for example) - while adaptations to changes in space (e.g., a new obstacle) will be slower.

Stachenfeld and colleagues offer empirical evidence for the existence of successor representations in the rat’s hippocampus and for the existence of a low-dimensional decomposition of successor representations in the entorhinal cortex (the main interface between the hippocampus and neocortex). The authors show that these low-dimensional decompositions of the successor representations lend themselves to the discovery of subgoals, a hallmark of efficient planning and the foundation for hierarchical, increasingly abstract representations of tasks required for the generalization of knowledge to novel scenarios.

Comparing model predictions (B) to reality (A) (i.e., the firing rates of cells recorded in the hippocampus of a rat). As the rat is trained to run in a preferred direction along a narrow track, initially symmetric place cells (red) begin to skew (blue) predicted in theory (B) and demonstrated in practice (A).

From rats to humans, from spatial navigation to abstract reasoning

This isn’t isolated to rats; humans also use these decompositions of successor representations during strategic planning and decision making, as Constantinescou and colleagues show. What’s more, successor representations and their decompositions are used not only during spatial navigation, but also during abstract reasoning; abstract reasoning capabilities piggyback on representations evolved for spatial reasoning tasks.

Taken together, successor representations and their decompositions provide us with a clue as to how the brain computes abstract representations from sensory inputs that allow us (human and non-human animals) to generalize our experiences to novel situations, thus showing that the collaboration between neuroscience, psychology, and AI could be a very fruitful one indeed.

Read more

Newer
Nov 2, 2017 · post
Older
Oct 26, 2017 · newsletter

Latest posts

Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Jul 29, 2022 · post

Ethical Considerations When Designing an NLG System

by Andrew Reed · Blog Series This post serves as Part 4 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System At last, we’ve made it to the final chapter of this blog series.
...read more
Jul 11, 2022 · post

Automated Metrics for Evaluating Text Style Transfer

by Andrew & Melanie · By Andrew Reed and Melanie Beck Blog Series This post serves as Part 3 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System In our previous blog post, we took an in-depth look at how to neutralize subjectivity bias in text using HuggingFace transformers.
...read more
May 5, 2022 · post

Neutralizing Subjectivity Bias with HuggingFace Transformers

by Andrew Reed · Blog Series This post serves as Part 2 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Subjective language is all around us – product advertisements, social marketing campaigns, personal opinion blogs, political propaganda, and news media, just to name a few examples.
...read more
Mar 22, 2022 · post

An Introduction to Text Style Transfer

by Andrew Reed · Blog Series This post serves as Part 1 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Today’s world of natural language processing (NLP) is driven by powerful transformer-based models that can automatically caption images, answer open-ended questions, engage in free dialog, and summarize long-form bodies of text – of course, with varying degrees of success.
...read more
Jan 31, 2022 · post

Why and How Convolutions Work for Video Classification

by Daniel Valdez-Balderas · Video classification is perhaps the simplest and most fundamental of the tasks in the field of video understanding. In this blog post, we’ll take a deep dive into why and how convolutions work for video classification. Our goal is to help the reader develop an intuition about the relationship between space (the image part of video) and time (the sequence part of video), and pave the way to a deep understanding of video classification algorithms.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com
Notebook

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.
https://colab.research.google.com/drive/1pjPzsw_uZew-Zcz646JTkRDhF2GkPk0N

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter