Jul 31, 2018 · newsletter

Neural reinterpretations of movie trailers

In his latest project, artist and coder Mario Klingemann uses a neural network to match archival movie footage with the content of recent movie trailers. He regularly posts the resulting “neural reinterpretations” on his Twitter. The results are technically impressive. They’re also a fascinating view into how to explore the creative possibilities of a machine learning technique.

Looking through Klingemann’s tweets you can trace his explorations:

![A screenshot from Klingemann’s video of similar scene classification. A 3x3 grid shows several similar looking scenes. Some have planes, others are mostly blank, some have spare drawings of squares.]({{ site.github.url}}/images/editor_uploads/2018-06-26-144731-Screen_Shot_2018_06_25_at_10_45_15_AM.png)

Mario Klingemann’s neural scene classifier grouping scenes it finds similar.

![On the left is a shot of Brad Pitt from Fight Club; on the right is a man holding a telephone with a similar expression from the archive footage.]({{ site.github.url}}/images/editor_uploads/2018-06-26-144942-Screen_Shot_2018_06_25_at_10_46_42_AM.png)

A neural reinterpretation of the Fight Club trailer, with the original footage on the left and the matched on the right.

The movie trailer reinterpretations are a great showcase for the technique for a couple of reasons:

  1. Trailers are made up of short clips. This gives the algorithm lots of shots at finding interesting matches (every cut is a new example). If it was instead focused on a 2 minute long continuous scene, you wouldn’t get to see nearly as many matches. Also the fact that the cuts are often timed to the music makes the reinterpreted content appear more connected to the audio of the trailer.

  2. Films have a built up vocabulary of what different shots mean, like a close-up of a face to signal intense feelings. Film-makers employ these patterns consciously. As film watchers, we may not think about scene types explicitly, but we do build up associations and expectations with different framing, movements, and styles. The side-by-side reinterpretations make this referential language more visible by showing us two examples at a time, helping us notice the similarity the machine has identified. We can then often extrapolate even further into “ah, right, that’s another one of those ‘vehicles rushing by’ shots” that you normally don’t consciously note. This takes the trailers from technical demos into artistic territory.

![A screenshot of the video by Memo Atken. On the left is a blanket being scrunched up by hands; on the right is an image that looks like a painting of waves, where the shape of the waves matches the position of the hands and blanket.]({{ site.github.url}}/images/editor_uploads/2018-06-26-145050-Screen_Shot_2018_06_25_at_10_47_09_AM.png)

A still from “Learning to see: Gloomy Sunday” by Memo Atken

“Learning to see: Gloomy Sunday” by Memo Akten explores similarity in a different, fascinating way. He has a model trained on specific types of art that interpret his webcam photos and generate new images: for example, a sheet becomes waves. Like in the trailer reinterpretations, what takes this beyond technical demo is how suggestive the association can be. The machine’s ability to identify similarity between a sheet and a wave gives us an understanding that we can then apply outside of the context of the video. It’s a suggestive analogy that opens out so that the viewer can build upon it and make their own connections.

Read more

Jul 31, 2018 · newsletter
Jul 24, 2018 · post

Latest posts

May 5, 2022 · post

Neutralizing Subjectivity Bias with HuggingFace Transformers

by Andrew Reed · Subjective language is all around us – product advertisements, social marketing campaigns, personal opinion blogs, political propaganda, and news media, just to name a few examples. From a young age, we are taught the power of rhetoric as a means to influence others with our ideas and enact change in the world. As a result, this has become society’s default tone for broadcasting ideas. And while the ultimate morality of our rhetoric depends on the underlying intent (benevolent vs. more
Mar 22, 2022 · post

An Introduction to Text Style Transfer

by Andrew Reed · Today’s world of natural language processing (NLP) is driven by powerful transformer-based models that can automatically caption images, answer open-ended questions, engage in free dialog, and summarize long-form bodies of text – of course, with varying degrees of success. Success here is typically measured by the accuracy (Did the model produce a correct response?) and fluency (Is the output coherent in the native language?) of the generated text. While these two measures of success are of top priority, they neglect a fundamental aspect of language – style. more
Jan 31, 2022 · post

Why and How Convolutions Work for Video Classification

by Daniel Valdez-Balderas · Video classification is perhaps the simplest and most fundamental of the tasks in the field of video understanding. In this blog post, we’ll take a deep dive into why and how convolutions work for video classification. Our goal is to help the reader develop an intuition about the relationship between space (the image part of video) and time (the sequence part of video), and pave the way to a deep understanding of video classification algorithms. more
Dec 14, 2021 · post

An Introduction to Video Understanding: Capabilities and Applications

by Daniel Valdez Balderas · Video footage constitutes a significant portion of all data in the world. The 30 thousand hours of video uploaded to Youtube every hour is a part of that data; another portion is produced by 770 million surveillance cameras globally. In addition to being plentiful, video data has tremendous capacity to store useful information. Its vastness, richness, and applicability make the understanding of video a key activity within the field of computer vision. more
Sep 22, 2021 · post

Automatic Summarization from TextRank to Transformers

by Melanie Beck · Automatic summarization is a task in which a machine distills a large amount of data into a subset (the summary) that retains the most relevant and important information from the whole. While traditionally applied to text, automatic summarization can include other formats such as images or audio. In this article we’ll cover the main approaches to automatic text summarization, talk about what makes for a good summary, and introduce Summarize. – a summarization prototype we built that showcases several automatic summarization techniques. more
Sep 21, 2021 · post

Extractive Summarization with Sentence-BERT

by Victor Dibia · In extractive summarization, the task is to identify a subset of text (e.g., sentences) from a document that can then be assembled into a summary. Overall, we can treat extractive summarization as a recommendation problem. That is, given a query, recommend a set of sentences that are relevant. The query here is the document, relevance is a measure of whether a given sentence belongs in the document summary. How we go about obtaining this measure of relevance varies (a common dilemma for any recommendation system). more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)


In-depth guides to specific machine learning capabilities


Machine learning prototypes and interactive notebooks


A usable library for question answering on large datasets.

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter