Blog

Jul 31, 2018 · newsletter

Neural reinterpretations of movie trailers

In his latest project, artist and coder Mario Klingemann uses a neural network to match archival movie footage with the content of recent movie trailers. He regularly posts the resulting “neural reinterpretations” on his Twitter. The results are technically impressive. They’re also a fascinating view into how to explore the creative possibilities of a machine learning technique.

Looking through Klingemann’s tweets you can trace his explorations:

![A screenshot from Klingemann’s video of similar scene classification. A 3x3 grid shows several similar looking scenes. Some have planes, others are mostly blank, some have spare drawings of squares.]({{ site.github.url}}/images/editor_uploads/2018-06-26-144731-Screen_Shot_2018_06_25_at_10_45_15_AM.png)

Mario Klingemann’s neural scene classifier grouping scenes it finds similar.

![On the left is a shot of Brad Pitt from Fight Club; on the right is a man holding a telephone with a similar expression from the archive footage.]({{ site.github.url}}/images/editor_uploads/2018-06-26-144942-Screen_Shot_2018_06_25_at_10_46_42_AM.png)

A neural reinterpretation of the Fight Club trailer, with the original footage on the left and the matched on the right.

The movie trailer reinterpretations are a great showcase for the technique for a couple of reasons:

  1. Trailers are made up of short clips. This gives the algorithm lots of shots at finding interesting matches (every cut is a new example). If it was instead focused on a 2 minute long continuous scene, you wouldn’t get to see nearly as many matches. Also the fact that the cuts are often timed to the music makes the reinterpreted content appear more connected to the audio of the trailer.

  2. Films have a built up vocabulary of what different shots mean, like a close-up of a face to signal intense feelings. Film-makers employ these patterns consciously. As film watchers, we may not think about scene types explicitly, but we do build up associations and expectations with different framing, movements, and styles. The side-by-side reinterpretations make this referential language more visible by showing us two examples at a time, helping us notice the similarity the machine has identified. We can then often extrapolate even further into “ah, right, that’s another one of those ‘vehicles rushing by’ shots” that you normally don’t consciously note. This takes the trailers from technical demos into artistic territory.

![A screenshot of the video by Memo Atken. On the left is a blanket being scrunched up by hands; on the right is an image that looks like a painting of waves, where the shape of the waves matches the position of the hands and blanket.]({{ site.github.url}}/images/editor_uploads/2018-06-26-145050-Screen_Shot_2018_06_25_at_10_47_09_AM.png)

A still from “Learning to see: Gloomy Sunday” by Memo Atken

“Learning to see: Gloomy Sunday” by Memo Akten explores similarity in a different, fascinating way. He has a model trained on specific types of art that interpret his webcam photos and generate new images: for example, a sheet becomes waves. Like in the trailer reinterpretations, what takes this beyond technical demo is how suggestive the association can be. The machine’s ability to identify similarity between a sheet and a wave gives us an understanding that we can then apply outside of the context of the video. It’s a suggestive analogy that opens out so that the viewer can build upon it and make their own connections.

Read more

Newer
Jul 31, 2018 · newsletter
Older
Jul 24, 2018 · post

Latest posts

Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Jul 29, 2022 · post

Ethical Considerations When Designing an NLG System

by Andrew Reed · Blog Series This post serves as Part 4 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System At last, we’ve made it to the final chapter of this blog series.
...read more
Jul 11, 2022 · post

Automated Metrics for Evaluating Text Style Transfer

by Andrew & Melanie · By Andrew Reed and Melanie Beck Blog Series This post serves as Part 3 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System In our previous blog post, we took an in-depth look at how to neutralize subjectivity bias in text using HuggingFace transformers.
...read more
May 5, 2022 · post

Neutralizing Subjectivity Bias with HuggingFace Transformers

by Andrew Reed · Blog Series This post serves as Part 2 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Subjective language is all around us – product advertisements, social marketing campaigns, personal opinion blogs, political propaganda, and news media, just to name a few examples.
...read more
Mar 22, 2022 · post

An Introduction to Text Style Transfer

by Andrew Reed · Blog Series This post serves as Part 1 of a four part blog series on the NLP task of Text Style Transfer. In this post, we expand our modeling efforts to a more challenging dataset and propose a set of custom evaluation metrics specific to our task. Part 1: An Introduction to Text Style Transfer Part 2: Neutralizing Subjectivity Bias with HuggingFace Transformers Part 3: Automated Metrics for Evaluating Text Style Transfer Part 4: Ethical Considerations When Designing an NLG System Today’s world of natural language processing (NLP) is driven by powerful transformer-based models that can automatically caption images, answer open-ended questions, engage in free dialog, and summarize long-form bodies of text – of course, with varying degrees of success.
...read more
Jan 31, 2022 · post

Why and How Convolutions Work for Video Classification

by Daniel Valdez-Balderas · Video classification is perhaps the simplest and most fundamental of the tasks in the field of video understanding. In this blog post, we’ll take a deep dive into why and how convolutions work for video classification. Our goal is to help the reader develop an intuition about the relationship between space (the image part of video) and time (the sequence part of video), and pave the way to a deep understanding of video classification algorithms.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com
Notebook

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.
https://colab.research.google.com/drive/1pjPzsw_uZew-Zcz646JTkRDhF2GkPk0N

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter