Blog

Sep 28, 2018 · newsletter

Apache Spark gets a machine learning makeover

Machine learning on Spark: an abridged history

Apache Spark - the cluster computing framework that’s been throwing shade at MapReduce since 2011 - has always been a bit remarkable, because it bridged the divide between data engineering and data science. One of the great promises of Spark was that it would be easy, trivial almost, to scale machine learning and data science to arbitrarily large data. Seven years later, Spark has made its place in data science, but perhaps not in the way we originally hoped.

Spark’s big contribution was that it delivered a very elegant API for dealing with distributed collections of data, termed Resilient Distributed Datasets (RDDs). Compared to alternatives at the time, it was simple to use that API to write certain machine learning algorithms, and since those algorithms were built on RDDs; you got fault tolerance and scale for free. It wasn’t long until a machine learning library built on RDDs was born: MLlib.

Implementing performant, scalable machine learning algorithms in MLlib wasn’t quite as easy as just expressing the logic using RDD transformations, but in some cases it worked quite well. Spark, and by extension MLlib, work well when algorithms can be expressed in parallel, independent tasks that each work on independent chunks of data. Accordingly, MLlib has seen success and adoption with linear models, K-means clustering, decision trees, and some others. But some algorithms, most notably deep learning, are difficult to express using Spark.

In comparison to linear models, optimizing deep learning algorithms over distributed collections requires frequent communication between tasks. Further, deep learning is slow, if you don’t use a framework that has been heavily optimized for that exact use case. Tensorflow, PyTorch, MXNet, etc. all leverage accelerated hardware and heavily optimized C/C++ code to achieve reasonable efficiency. All this is to say that Spark and deep learning aren’t a very good match. So why are we talking about it?

Deep learning needs data (big data!) and that data often needs to be accessed through or pre-processed by Spark. That data is also messy and is probably stored across many datasets in many different storage platforms. Spark makes reading, aggregating, and joining these datasets less awful. So even if Spark isn’t heavily optimized for machine learning, the data that feeds these algorithms often goes through Spark first. This reality led many developers to ponder, “what if we could combine the heavily optimized ML/DL frameworks into Spark?” And with that, the family of XOnSpark libraries came to be.

But Spark hasn’t made it very easy to combine these other libraries, most of which are written in a combination of Python and C++, with Spark. There are three main shortcomings:

  • Moving data between Spark processes (JVM) and Python processes is inefficient
  • Spark task scheduling doesn’t take GPUs into account
  • Deep learning tasks need to constantly communicate gradient/weight updates between them, which is a Spark anti-pattern

Project Hydrogen makes Spark play nice with other ML frameworks

To address each of these issues, the open source community for Spark is undertaking a new initiative, dubbed Project Hydrogen, which is broken up into three main chunks, each designed to solve one of these shortcomings:

The goal of Project Hydrogen is to make it easy and efficient to build deep learning workflows that can run end to end in Spark. This is exciting!

Spark and deep learning can’t ignore each other, and that probably won’t change any time soon. Because of the current complexities, it’s best to avoid distributing deep learning training when possible. But we’re excited to see investment into scaling deep learning with Spark. There are so many great libraries for doing heavily optimized machine learning - PyTorch, Tensorflow, XGBoost, LightGBM - that it’s hugely beneficial to be able to scale these up with Spark.

Read more

Newer
Sep 28, 2018 · newsletter
Older
Sep 17, 2018 · post

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.