Blog

Sep 28, 2018 · newsletter

Realistic Video Generation

Generative Adversarial Networks (GANs) wowed the world in 2014 with their ability to generate what we considered to be realistic images. While these images were quite low resolution, researchers kept working on how to perfect these methods in order to increase the quality of the images and even to apply the algorithm on other types of data like text and sound.

However, until recently there has been little success in making realistic videos. The main problem with making videos is temporal consistency: while people can be forgiving in one frame and find some interpretation for unrealistic regions, we are adept at seeing inconsistencies with how videos progress.

For example, we can accept some strange looking texture in the background of an image as simply some strange looking background. However, if that background is randomly changing from frame to frame in a video, we immediately discount the video. It is exactly this temporal consistency which has plagued researchers trying to apply GANs to videos – while each frame seemed realistic taken on its own, when assembled into a video, there were considerable inconsistencies which ruined any illusion of realism. This restricted the ability to reuse models that showed success at generating individual images, and forced researchers to come up with new methods to deal with the temporal nature of videos.

Recently, researchers at NVIDIA and MIT have come up with a new type of GAN, vid2vid, which primarily addresses this problem by explicitly incorporating how things seem to be moving within the video, in order to continue this motion in future frames. (In addition, they follow previous work, which uses a multi-resolution approach for generating high resolution images). This is done by calculating the optical flow of the image, which is a classic computer vision method that simply has not been incorporated into such a model until now.

The results are quite staggering (we highly recommend watching their release video). With the model you can create dashboard camera footage from the initial segmentation frame (allowing you to change the type and shape of objects in the frame by simply drawing in the corresponding color); it’s even possible to create realistic looking dance videos from pose information. It’s interesting to see this new method as compared with previous methods, to really get a sense of how important this additional temporal information is for making realistic results.

These high quality results are quite exciting and are groundbreaking work in the field of video generation. From applications in generating synthetic training data to use in creative projects, the vid2vid model itself is instantly applicable.

Even more interesting is how the field as a whole will learn from this research and start finding ways to incorporate other classic algorithms into neural networks. Just as conv-nets explicitly encoded the two dimensional understanding we have for images into models so that they can more quickly and accurately learn how to work with that data, this method explicitly encodes our understanding of how frames of a video flow from one to another (albeit this was much trickier to do than the conv-net example!). We’re interested in seeing what other algorithms will be incorporated into neural networks like this and what capabilities these models will have.

Read more

Newer
Sep 28, 2018 · newsletter
Older
Sep 28, 2018 · newsletter

Latest posts

Nov 15, 2022 · newsletter

CFFL November Newsletter

November 2022 Perhaps November conjures thoughts of holiday feasts and festivities, but for us, it’s the perfect time to chew the fat about machine learning! Make room on your plate for a peek behind the scenes into our current research on harnessing synthetic image generation to improve classification tasks. And, as usual, we reflect on our favorite reads of the month. New Research! In the first half of this year, we focused on natural language processing with our Text Style Transfer blog series.
...read more
Nov 14, 2022 · post

Implementing CycleGAN

by Michael Gallaspy · Introduction This post documents the first part of a research effort to quantify the impact of synthetic data augmentation in training a deep learning model for detecting manufacturing defects on steel surfaces. We chose to generate synthetic data using CycleGAN,1 an architecture involving several networks that jointly learn a mapping between two image domains from unpaired examples (I’ll elaborate below). Research from recent years has demonstrated improvement on tasks like defect detection2 and image segmentation3 by augmenting real image data sets with synthetic data, since deep learning algorithms require massive amounts of data, and data collection can easily become a bottleneck.
...read more
Oct 20, 2022 · newsletter

CFFL October Newsletter

October 2022 We’ve got another action-packed newsletter for October! Highlights this month include the re-release of a classic CFFL research report, an example-heavy tutorial on Dask for distributed ML, and our picks for the best reads of the month. Open Data Science Conference Cloudera Fast Forward Labs will be at ODSC West near San Fransisco on November 1st-3rd, 2022! If you’ll be in the Bay Area, don’t miss Andrew and Melanie who will be presenting our recent research on Neutralizing Subjectivity Bias with HuggingFace Transformers.
...read more
Sep 21, 2022 · newsletter

CFFL September Newsletter

September 2022 Welcome to the September edition of the Cloudera Fast Forward Labs newsletter. This month we’re talking about ethics and we have all kinds of goodies to share including the final installment of our Text Style Transfer series and a couple of offerings from our newest research engineer. Throw in some choice must-reads and an ASR demo, and you’ve got yourself an action-packed newsletter! New Research! Ethical Considerations When Designing an NLG System In the final post of our blog series on Text Style Transfer, we discuss some ethical considerations when working with natural language generation systems, and describe the design of our prototype application: Exploring Intelligent Writing Assistance.
...read more
Sep 8, 2022 · post

Thought experiment: Human-centric machine learning for comic book creation

by Michael Gallaspy · This post has a companion piece: Ethics Sheet for AI-assisted Comic Book Art Generation I want to make a comic book. Actually, I want to make tools for making comic books. See, the problem is, I can’t draw too good. I mean, I’m working on it. Check out these self portraits drawn 6 months apart: Left: “Sad Face”. February 2022. Right: “Eyyyy”. August 2022. But I have a long way to go until my illustrations would be considered professional quality, notwithstanding the time it would take me to develop the many other skills needed for making comic books.
...read more
Aug 18, 2022 · newsletter

CFFL August Newsletter

August 2022 Welcome to the August edition of the Cloudera Fast Forward Labs newsletter. This month we’re thrilled to introduce a new member of the FFL team, share TWO new applied machine learning prototypes we’ve built, and, as always, offer up some intriguing reads. New Research Engineer! If you’re a regular reader of our newsletter, you likely noticed that we’ve been searching for new research engineers to join the Cloudera Fast Forward Labs team.
...read more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)

Reports

In-depth guides to specific machine learning capabilities

Prototypes

Machine learning prototypes and interactive notebooks
Notebook

ASR with Whisper

Explore the capabilities of OpenAI's Whisper for automatic speech recognition by creating your own voice recordings!
https://colab.research.google.com/github/fastforwardlabs/whisper-openai/blob/master/WhisperDemo.ipynb
Library

NeuralQA

A usable library for question answering on large datasets.
https://neuralqa.fastforwardlabs.com
Notebook

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.
https://colab.research.google.com/drive/1tTiOgJ7xvy3sjfiFC9OozbjAX1ho8WN9?usp=sharing
Notebooks

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.
https://qa.fastforwardlabs.com

Cloudera Fast Forward Labs

Making the recently possible useful.

Cloudera Fast Forward Labs is an applied machine learning research group. Our mission is to empower enterprise data science practitioners to apply emergent academic research to production machine learning use cases in practical and socially responsible ways, while also driving innovation through the Cloudera ecosystem. Our team brings thoughtful, creative, and diverse perspectives to deeply researched work. In this way, we strive to help organizations make the most of their ML investment as well as educate and inspire the broader machine learning and data science community.

Cloudera   Blog   Twitter

©2022 Cloudera, Inc. All rights reserved.