Dec 24, 2019 · newsletter

Squote - semantic quote search

Here in the (virtual) Fast Forward lab, we’re currently deep in the topic selection process for FF13. While one or two of our research engineers take the lead for each report, we work through several rounds of discussion and debate about the merits and demerits of topics on our collective radar as a team. Part of that process is dreaming up potential prototype applications.

Our multi-talented designer/dev Grant proposed a prototype: given a block of text, find a relevant quote.

It tickled my brain in the right way, and I decided to try and build it. When doing speculative work, there is some wisdom in trying to fail fast, and - thanks entirely to the hard work of other people - I had something working a few hours later. So continuing a theme of “staying up late hacking with pre-trained models,” we offer you , a semantic search tool for quotes.

The premise is that given a block of text - say the body of an email, or a paragraph from an essay - Squote should return you a semantically related quote. By “semantically related” I mean “has a similar embedding under BERT, measured with cosine similarity.” The result is that entering some text about mountains might also return you some text about hills. However, entering a short specific phrase will not necessarily return a block of text containing that phrase: we compare whole text embedding of the input to the whole text embedding of the quote (the whole text embedding being taken here as the mean of the contextual word embeddings). As such, the presence of other words in the quote may reduce its similarity to a phrase it contains.

Useful search is complex and hard, and Squote is intended only as a minimally viable demonstration. Conveniently for the sake of this story, on precisely the same day I put together Squote, Google announced the use of BERT in their search engine in the blog post Understanding searches better than ever before. Not having had quite the same development investment as Google’s search engine, Squote certainly doesn’t always produce a quote that is obviously relevant. At the least though, it’s usually entertaining to ponder why it returned what it did. We hope you have some fun with it.

For those interested, the source is available for your perusal, use, and modification at cjwallace/squote. Squote is built entirely in python (including the interface) on three open source projects. Essentially all the functionality was provided “out-the-box” by these projects.

  • BERT-as-a-Service is exactly what it sounds like! This repo allows you to host the BERT model as a micro-service, and provides a python client that can communicate with the service through a simple API. This reduces getting a state-of-the-art sentence embedding (a length 768 vector) to a simple function call in your python app.
  • FAISS is a library for similarity search and clustering of vector representations. While it’s easy enough to define L2 or cosine similarity in pure python, when matching against embedding vectors representing a corpus of 75,000 quotes, it’s nice to know that someone else has thought about indexing that efficiently. After two native library installs, usage was incredibly straightforward through the python library (thanks to a prebuilt version at faiss_prebuilt).
  • Streamlit is a new library for building interactive machine learning tools with python. It’s spiritually somewhere between RShiny and ObservableHQ, staying in pure python but incorporating a kind of reactive flow - when an input is updated, the output is regenerated without any explicit code to trigger it. It only took a few minutes to feel comfortable with the basic model of Streamlit, and I’ll definitely be keeping it in my toolbox.

The pace of advancement in natural language technology has increased substantially over the past 18 months, and seems impossible to keep up. However, I believe there are hundreds of useful natural language applications that could be built with what is rapidly becoming commodity technology (and maybe some fine tuning)! Happy building!

Read more

Jan 29, 2020 · post
Nov 21, 2019 · newsletter

Latest posts

Jun 22, 2020 · post

How to Explain HuggingFace BERT for Question Answering NLP Models with TF 2.0

by Victor · 199 // ... code -- Figure 1: In this sample, a BERTbase model gets the answer correct (Achaemenid Persia). Model gradients show that the token “subordinate ..” is impactful in the selection of an answer to the question “Macedonia was under the rule of which country?". This makes sense .. good for BERTbase. Recently, our team at Fast Forward Labs have been exploring state of the art models for Question Answering and have used the rather excellent HuggingFace transformers library. more
Jun 16, 2020 · notebook

Evaluating QA: Metrics, Predictions, and the Null Response →

by Melanie · A deep dive into computing QA predictions and when to tell BERT to zip it! In our last post, Building a QA System with BERT on Wikipedia, we used the HuggingFace framework to train BERT on the SQuAD2.0 dataset and built a simple QA system on top of the Wikipedia search engine. This time, we’ll look at how to assess the quality of a BERT-like model for Question Answering.
May 19, 2020 · notebook

Building a QA System with BERT on Wikipedia →

by Melanie · So you’ve decided to build a QA system. You want to start with something simple and general so you plan to make it open domain using Wikipedia as a corpus for answering questions. You want to use the best NLP that your compute resources allow (you’re lucky enough to have access to a GPU) so you’re going to focus on the big, flashy Transformer models that are all the rage these days.
Apr 28, 2020 · notebook

Intro to Automated Question Answering →

by Melanie · Welcome to the first edition of the Cloudera Fast Forward blog on Natural Language Processing for Question Answering! Throughout this series, we’ll build a Question Answering (QA) system with off-the-shelf algorithms and libraries and blog about our process and what we find along the way. We hope to wind up with a beginning-to-end documentary that provides:
Apr 1, 2020 · newsletter

Enterprise Grade ML

by Shioulin · At Cloudera Fast Forward, one of the mechanisms we use to tightly couple machine learning research with application is through application development projects for both internal and external clients. The problems we tackle in these projects are wide ranging and cut across various industries; the end goal is a production system that translates data into business impact. What is Enterprise Grade Machine Learning? Enterprise grade ML, a term mentioned in a paper put forth by Microsoft, refers to ML applications where there is a high level of scrutiny for data handling, model fairness, user privacy, and debuggability. more
Apr 1, 2020 · post

Bias in Knowledge Graphs - Part 1

by Keita · Introduction This is the first part of a series to review Bias in Knowledge Graphs (KG). We aim to describe methods of identifying bias, measuring its impact, and mitigating that impact. For this part, we’ll give a broad overview of this topic. image credit: Mediamodifier from Pixabay Motivation Knowledge graphs, graphs with built-in ontologies, create unique opportunities for data analytics, machine learning, and data mining. They do this by enhancing data with the power of connections and human knowledge. more

Popular posts

Oct 30, 2019 · newsletter
Exciting Applications of Graph Neural Networks
Nov 14, 2018 · post
Federated learning: distributed machine learning with data locality and privacy
Apr 10, 2018 · post
PyTorch for Recommenders 101
Oct 4, 2017 · post
First Look: Using Three.js for 2D Data Visualization
Aug 22, 2016 · whitepaper
Under the Hood of the Variational Autoencoder (in Prose and Code)
Feb 24, 2016 · post
"Hello world" in Keras (or, Scikit-learn versus Keras)


In-depth guides to specific machine learning capabilities


Machine learning prototypes and interactive notebooks


A usable library for question answering on large datasets.

Explain BERT for Question Answering Models

Tensorflow 2.0 notebook to explain and visualize a HuggingFace BERT for Question Answering model.

NLP for Question Answering

Ongoing posts and code documenting the process of building a question answering model.

Interpretability Revisited: SHAP and LIME

Explore how to use LIME and SHAP for interpretability.


Cloudera Fast Forward is an applied machine learning reseach group.
Cloudera   Blog   Twitter